A Tailored Approach to CRT Optimization

The challenges of CRT Optimization

Reducing the risk of replacement

>60% of CRT-D patient survival at 5 years\(^1\), but not all battery technologies have the same performance over time

Maximizing CRT response

Non-Apical pacing is associated with better CRT outcome\(^2\) versus Apical pacing, but is harder to achieve without dedicated lead design

Longer RVS-LVS interval has shown improved CRT response\(^3\), but a measurement is needed for each patient due to conduction variability

A Tailored Approach to CRT Optimization

Reducing the risk of replacement

Unmatched device longevity shown in independent real-world studies

Maximizing CRT response

Acuity X4 family of leads for more non-apical pacing options

VectorGuide™ one-click test to help you identify the longest RVS-LVS interval

What is the need for long-lasting CRT-D devices?

- **What are the risks associated with device replacements?**

- What would be the **clinical benefit** of a CRT-D that lasts 8-10 years instead of a CRT-D that lasted 4-5 years?

 ✓ Compared to a first implant, the cumulative incidence of surgical re-intervention following device replacement is 2.5 times higher – and goes up to 7-9% (Borleffs 2010)

 ✓ 30% of device related infections could be avoided if device batteries lasted at least 9 years (Ramachandra 2010)

1 Borleffs. Recurrent Implantable Cardioverter-Defibrillator Replacement Is Associated with an Increasing Risk of Pocket-Related Complications.

© 2015 Boston Scientific Corporation or its affiliates. All rights reserved. All trademarks are the property of their respective owners. CRM 200801 AB FEB2015
ENDURALIFE™ Battery Technology

Capacity
High battery capacity is nearly double the standard capacity of other ICDs and CRT-Ds.\(^2\)

Chemistry
Li/MnO2 chemistry maintains stable operating voltage and internal resistance for more effective battery utilization.\(^3\)

Efficiency
Advanced manufacturing capabilities enable a device that is up to 11% smaller and 24% thinner with nearly twice the capacity than other manufacturers.\(^4\)

1. EnduraLife™ Battery Technology is featured in X4 CRT-Ds and EL ICDs, as well as Cognis, Teligen, Puncture, Emergen, Incepta ICDs and CRT-Ds.
2. Boston Scientific ICDs and CRT-Ds with contemporary battery technology have 1.8 Ah. Medtronic ICDs and CRT-Ds have 1.8 Ah. 3. Data on file at Boston Scientific Corporation.
3. Boston Scientific ICDs and CRT-Ds with contemporary battery technology have 1.8 Ah. Medtronic ICDs and CRT-Ds have 1.0 Ah. 4. Data on file at Boston Scientific Corporation.

OVERVIEW CAPACITY CHEMISTRY EFFICIENCY

ENDURALIFE™ Battery Technology has the largest battery capacity in the industry.\(^2\)

High battery capacity is nearly 2x the standard capacity of Medtronic ICDs and CRT-Ds.\(^5\)

REFERENCES
CRM-302505-AA MAR2015 © 2015 Boston Scientific Corporation or its affiliates. All rights reserved. All trademarks are the property of their respective owners.
A Tailored Approach to CRT Optimization

Reducing the risk of replacement

Unmatched device longevity shown in independent real-world studies

Maximizing CRT response

Acuity X4 family of leads for more non-apical pacing options

VectorGuide™ one-click test to help you identify the longest RVS-LVS interval

A Unique two-step approach for maximizing CRT response (1/2)

1. More effective pacing options in a non-apical location

 - MADIT CRT and other studies have shown that most patients benefit from non-apical pacing

 Acuity X4 Family of leads offers three options to select the most suitable LV lead

“Apical pacing should be avoided in CRT”

Left Ventricular Lead Position and Clinical Outcome in MADIT-CRT Trial.
Singh J. et al., Circulation, 2011

<table>
<thead>
<tr>
<th>Probability of survival free of heart failure or death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Years from randomization</td>
</tr>
<tr>
<td>Apical Pacing</td>
</tr>
<tr>
<td>Non-apical</td>
</tr>
</tbody>
</table>

72% Increased risk for HF/death with apical pacing

“Position of the RV lead tip was indifferent”

Sites of LV and RV lead implantation and response to CRT observations from REVERSE trial.
Thebault C et al., European Heart Journal, 2012

<table>
<thead>
<tr>
<th>Probability of survival free of heart failure or death</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months since randomization</td>
</tr>
<tr>
<td>Apical Pacing</td>
</tr>
<tr>
<td>Non-apical</td>
</tr>
</tbody>
</table>

73% Increased risk for HF/death with apical pacing

1. Thebault C et al. Sites of left and right ventricular lead implantation and response to cardiac resynchronization therapy observations: from the REVERSE trial. Eur Heart J 2012;33:2662–2671. *Defined as proportion of patients whose LVEF had decreased by ≥15% at 12 months
The challenges of Non-Apical pacing

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Non-Apical</th>
<th>Apical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Threshold(^1)</td>
<td>Worse capture (poor electrode-myocardial contact)</td>
<td>Better capture (close electrode-myocardial contact)</td>
</tr>
<tr>
<td>Stability</td>
<td>Higher risk of dislodgement</td>
<td>Lower risk of dislodgement</td>
</tr>
<tr>
<td>PNS(^2)</td>
<td>Better</td>
<td>Worse</td>
</tr>
<tr>
<td>Patient Outcome(^3)</td>
<td>Better</td>
<td>Worse</td>
</tr>
</tbody>
</table>

Non-Apical pacing locations, which shown to have **better clinical outcomes**, may be harder to achieve in the implant setting.

More effective pacing options in a non-apical location

- **Long veins**
 - ACUITY™ X4 Spiral L

- **Short veins**
 - ACUITY™ X4 Spiral S

- **Narrow or tortuous veins**
 - ACUITY™ X4 Straight

The Acuity™ X4 family of LV leads offers different electrode spacing to accommodate individual anatomy and help you pace at your target location.

2. Occurrence of phrenic nerve stimulation in cardiac resynchronization therapy patients: the role of left ventricular lead type and placement site.

© 2015 Boston Scientific Corporation or its affiliates. All rights reserved. All trademarks are the property of their respective owners. CRM 250861.AB FEB2015.
A Unique two-step approach for maximizing CRT response (2/2)

A one-click test to identify the longest RVS-LVS electrical delay

- Patients ventricular activation patterns may vary considerably
- Longer electrical delay at pacing site has shown to reduce HF hospitalization and increase the number of responders

VectorGuide™ tool offers a one-click test to target the most appropriate electrode

One additional click for a potential lifetime benefit

1. Khan FZ et al. Targeted left ventricular lead placement to guide cardiac resynchronization therapy: the TARGET study, a randomized, controlled trial. J Am Coll Cardiol 2012;59:1509–1518

© 2015 Boston Scientific Corporation or its affiliates. All rights reserved. All trademarks are the property of their respective owners. CRM-293801-AB FEB2015

2

Longer RVS-LVS interval at pacing site: independent predictor of CRT response?

Gold M. et al. ESC 2014 (n=419)

Longer RVS-LVS was an independent predictor of structural responses to CRT

Response rates varies from 30% to 75% (quartiles 1 and 4 respectively)

Gold M. et al., ESC 2014 (n=1342)

Reduction of risk of HF hospitalization or death associated with longer RVS-LVS delay

30%

The changes in LVESV, LVEDV and LVEF responses from implant to 6 months for RV-LV quartiles

Gold M. et al. The Relationship Between RV-LV Delay and Left Ventricular Reverse Remodeling With Cardiac Resynchronization Therapy. ESC 2014. Patients were grouped by RV-LV quartiles with cutoffs at 40, 65, and 100 ms. Response rates by quartile were 90%, 49%, 53% and 75% respectively.

Gold M. et al. The Role RV-LV Delay to Predict Time to First Heart Failure Hospitalization and Mortality with Cardiac Resynchronization Therapy. ESC 2014.

Kaplan-Meier curves of HF-Free Survival for the short and long RV-LV groups

2. Gold M. et al. The Role RV-LV Delay to Predict Time to First Heart Failure Hospitalization and Mortality with Cardiac Resynchronization Therapy. ESC 2014.

© 2015 Boston Scientific Corporation or its affiliates. All rights reserved. All trademarks are the property of their respective owners. CRM-293801-AB FEB2015
2. One click test to identify the longest RVS-LVS electrical interval

VectorGuide™ is designed to quickly identify the best of 17 vectors options based on clinically relevant tests including RVS-LVS delay

* Example of RVS-LVS delay test results from a Rally X4 Study patient. Data on file

A Tailored Approach to CRT Optimization

Reducing the risk of replacement

Unmatched device longevity shown in independent real-world studies

Maximizing CRT response

Acuity X4 family of leads for more non-apical pacing options

VectorGuide™ one-click test to help you identify the longest RVS-LVS interval

X4 CRT-D System

One Click for a Potential Lifetime Benefit

Now with VectorGuide™