Cardiac arrest in cath Lab

By
Osama Louis, MD
National Heart Institute

PCI in the real world

Although approximately 2,000,000 patients undergo PCI yearly worldwide, only a very small minority will suffer a protracted cardiac arrest episode during the procedure that results in death.

Cardiac arrest itself in the cath lab is not an uncommon event, but is usually rapidly resolved with proper management.
Figure 1. In-hospital mortality rates of percutaneous coronary intervention (PCI) reflect the severity of illness. The more seriously ill, the greater the observed mortality. Cardiac arrest = a pulseless clinical scenario requiring cardiopulmonary resuscitation (CPR) within 24 h of the PCI. Salvage = patient undergoing CPR en route to the operating room or prior to anesthesia induction or has ongoing ECMO to maintain life. ECMO, extracorporeal membrane oxygenation; STEMI, ST-elevation myocardial infarction.
Causes of Cath lab Catastrophes

Non-Coronary Arrest in the Cath Lab

- Massive and submassive PE
- HOCM
- Pneumothorax.
- Electrolyte disturbances
- Anaphylaxis
- Major Bleeding

Anaphylaxis Cardiac Arrest

Five therapeutic agents are used for the treatment of anaphylactoid reactions:

- Epinephrine
- Steroids,
- H1 blockers
- H2 blockers
- Volume administration
Tension pneumothorax

During permanent pacemaker implantation

Initial treatment?

1-needle decompression.

In 2nd intercostal space – mid clavicular line

2-thoracostomy (if ventilated or expertise available)
Cath lab Catastrophes

Coronary procedure related arrest
- Anomalous coronary arteries
- Anomalous LM arising from Right cusp
- Vessel closure:
 - Dissection
 - Thrombus formation
 - Spasm
 - No-reflow in a major vessel
- Introduction of Air or thrombus
- Perforations
- Electrical complications

Electrical instability

“...I thought you said never to say OOPS in the Cath Lab”
“Huh; never seen THAT before!”

“START CPR 1ST”

We can show you how!
Adult Bradycardia With a Pulse Algorithm

1. Assess appropriateness for clinical condition. Heart rate typically <50/min if bradycardia.

2. Identify and treat underlying cause:
 - Maintain patent airway; assist breathing as necessary
 - Oxygen if hypoxemic
 - Cardiac monitor to identify rhythm; monitor blood pressure and oximetry
 - IV access
 - 12-Lead ECG if available; don’t delay therapy

3. Persistent bradycardia causing:
 - Hypotension?
 - Acutely altered mental status?
 - Signs of shock?
 - Ischemic chest discomfort?
 - Acute heart failure?

4. Monitor and observe

5. Atropine
 - If atropine ineffective:
 - Transcutaneous pacing
 - or
 - Dopamine infusion
 - or
 - Epinephrine infusion

6. Consider:
 - Expert consultation
 - Transcutaneous pacing

Temporary pacemaker

Doses/Details
- Atropine IV dose:
 - First dose: 0.5 mg bolus, Repeat every 3-5 minutes. Maximum: 3 mg.
- Dopamine IV infusion:
 - Usual infusion rate is 2-20 mcg/kg per minute. Titrated to patient response; taper slowly.
- Epinephrine IV infusion:
 - 2-10 mcg per minute. Titrated to response.

Adult Tachycardia With a Pulse Algorithm

1. Assess appropriateness for clinical condition. Heart rate typically x150/min if tachycardia.

2. Identify and treat underlying cause:
 - Maintain patent airway; assist breathing as necessary
 - Oxygen if hypoxemic
 - Cardiac monitor to identify rhythm; monitor blood pressure and oximetry

3. Persistent tachycardia causing:
 - Hypotension?
 - Acutely altered mental status?
 - Signs of shock?
 - Ischemic chest discomfort?
 - Acute heart failure?

4. No

5. Synchronized cardioversion
 - Consider sedation
 - If regular narrow complex, consider adenosine

6. Yes

7. IV access and 12-lead ECG if available
 - Consider adenosine only if regular and monomorphic
 - Consider antiarrhythmic infusion
 - Consider expert consultation

Doses/Details
- Synchronized cardioversion:
 - Initial recommended doses:
 - Narrow regular: 50-100 J
 - Narrow irregular: 120-200 J
 - Wide regular: 100 J
 - Wide irregular: defibrillation dose
 - Adenosine IV dose:
 - First dose: 6 mg rapid IV push, follow with NS flush. Second dose: 12 mg if required.
- Antiarrhythmic Infusions for Stable Wide-QRS Tachycardias
 - Procainamide IV dose:
 - 20-50 mg/min until arrhythmia suppressed, hypotension arises, QRS duration increases >50%, or maximum dose 17 mg/kg given, Maintenance infusion: 1-4 mg/min. Avoid if prolonged QT or CHF.
 - Amiodarone IV dose:
 - First dose: 150 mg over 10 minutes. Repeat as needed if VT recurs. Follow by maintenance infusion of 1 mg/min for first 6 hours.
 - Total IV dose: 100 mg (1.5 mg/kg) over 5 minutes. Avoid if prolonged QT.
Air Embolism

Often from manifold injections (contrast or flush) and/or during introduction of devices.

Usually small amount are tolerated

Chest pain
Bradycardia
Hypotension
MI
Death

Prevention
- Back bleed before injection
- Avoid pressurized flush

Case:1
Case: 2

Catastrophes in cath lab

Case: 3
Catastrophes in cath lab

Case: 4

Coronary Perforation

- Occurs in between 0.1% - 0.7%
- More with oversized stents
- Hydrophilic guide wire
- Cardiac tamponade and hemodynamic collapse can occur in seconds.
- Highest mortality among all PCI complications
Coronary Perforation

- Early recognition is the key to a successful outcome
- Reversal of anticoagulation
- Prolonged inflation (up to 10 min) of an oversized balloon at low pressure.
- Pericardiocentesis
- Covered stents (require post-dilation, high pressure)
- Urgent surgical revascularization.

Javaid et al Am J Cardiol 2006; 98: 911-4

Rules of engagement for Code Blue

- **The cardiac catheterization lab** is a self-sufficient critical care area and is considered one of the best places to save cardiac arrest patients.

- All equipment and drugs are available for complete cardiovascular support and in some labs, even open heart surgery can be performed.

- Most cath lab nurses are highly skilled at both routine cath patient care as well as critical care patient and all the staff must have Advanced life support certification.
How is CPR done in the cath lab?

Manual chest compression in the cath lab is usually difficult and carry high risk to the medical team from exposure to radiation.

Disadvantages of Manual Chest Compressions in the Cardiac Catheterization Laboratory

- **Difficult to perform:**
 - Limited space around the cath table
 - Overreaching or stretching of rescuer performing compressions
 - Table itself less stable in the “working” position
 - May require lengthy periods of compressions

- **Extensive radiation exposure to the rescuer**
 - Hands in the beam
 - Head next to the radiation beam and intensifier
Mechanical Cardiopulmonary Resuscitation In and On the Way to the Cardiac Catheterization Laboratory

Cardiac arrest, though not common during coronary angiography, is increasingly occurring in the catheterization laboratory because of the expanding complexity of percutaneous interventions (PCIs) and the patient population being treated. Manual chest compression in the cath lab is not easily performed, often interrupted, and can result in the provider experiencing excessive radiation exposure. Mechanical cardiopulmonary resuscitation (CPR) provides unique advantages over manual performance of chest compression for treating cardiac arrest in the cardiac cath lab. Such advantages include the potential for uninterrupted chest compressions, less radiation exposure, better quality chest compressions, and less crowded conditions around the catheterization table, allowing more attention to ongoing percutaneous coronary intervention efforts.

Larsen et al, Resuscitation 2007

Advantages of Mechanical Chest Compressions in the Cardiac Catheterization Laboratory

- Gas-driven sternal compression device with suction cup (LUCAS)
- PCI feasible in 13 pts with arrest or severe hypotension / bradycardia; mean BP 81/34 mmHg

- Uninterrupted chest compressions
 - No fatigue or changing rescuers

- No hands in the X-ray beam or head near the image intensifier
 - Less radiation exposure

- Less crowded around the cath table
 - Allows more attention to ongoing percutaneous coronary intervention efforts

- Better quality chest compressions
 - Consistent rate, depth and release
Lengthy resuscitations in the cath lab carry extremely high rates of mortality because it is essentially impossible to perform effective chest compressions during PCI.

Use of a mechanical chest compression device, LUCASTM, in the cath lab in patients who suffered circulatory arrest requiring prolonged resuscitation.

You must understand local circumstances in order to achieve success.

Take Home Massage
Thank YOU