Pulmonary Valve Implantation, current indications, what is new

REDA ABUELATTA, MD, FSCAI, FACC
Consultant interventional cardiologist
Madinah Cardiac Center SA
National Heart Institute EG
Cardio-Egypt
February 2018

Congenital Cardiac Diagnoses

>20% of CHD lesions affect the RVOT

~20% repaired with conduit*

~80% repaired without conduit
Residual Lesions in TOF

The Bottom Line

Risks > Benefits

Risks ≈ Benefits

Risks < Benefits

Indications for conduit replacement (RVOT dysfunction)

- No formal guidelines regarding timing of sub-pulmonary conduit replacement

- Class IIa (LOE B):
 - It is reasonable to consider trans-catheter pulmonary valve replacement (TPVR) in the patient with ≥ moderate PR or PS provided the patient meets TPV IFU criteria

Indications for **Surgical** PVR in TOF

- Class I: Severe symptomatic PR or PS
 - Exercise intolerance otherwise not explained
 - Signs/Symptoms of heart failure
 - Syncope attributable to arrhythmia

Irreversible RV dysfunction is *generally* present by the time symptoms develop

<table>
<thead>
<tr>
<th>Criteria</th>
<th>AHA</th>
<th>ESC</th>
<th>CCS</th>
<th>Geva</th>
</tr>
</thead>
<tbody>
<tr>
<td>RVEDvi</td>
<td>≥Moderate</td>
<td>>160mL/m2</td>
<td>>170mL/m2</td>
<td>>150mL/m2 or Z-score >4 or RV/LV end-diastolic volume ratio >2</td>
</tr>
<tr>
<td>RVESVi</td>
<td>Not specified</td>
<td>Not specified</td>
<td>Not specified</td>
<td>>80mL/m2</td>
</tr>
<tr>
<td>RV function</td>
<td>≥Moderate RV dysfunction</td>
<td>Progressive RV dysfunction</td>
<td>≥Moderate RV dysfunction</td>
<td>RV EF <47%</td>
</tr>
<tr>
<td>RVOT obstruction</td>
<td>PIG ≥50mmHg or RV/LV pressure ratio ≥0.7</td>
<td>PIG ≥80mmHg (4.3m/s)</td>
<td>RV systolic pressure ≥2/3 systemic pressure</td>
<td>RV systolic pressure ≥2/3 systemic pressure</td>
</tr>
<tr>
<td>PR</td>
<td>Severe</td>
<td>Severe</td>
<td>Free</td>
<td>≥Moderate (PRF≥25%)</td>
</tr>
<tr>
<td>TR</td>
<td>≥Moderate</td>
<td>≥Moderate</td>
<td>“Important”</td>
<td>≥Moderate</td>
</tr>
<tr>
<td>QRS duration</td>
<td>Not specified</td>
<td>>180msec</td>
<td>Not specified</td>
<td>>140msec</td>
</tr>
<tr>
<td>Arrhythmia</td>
<td>Symptomatic or sustained AT or VT</td>
<td>Sustained AT or VT</td>
<td>AT or VT</td>
<td>Sustained tachyarrhythmia</td>
</tr>
<tr>
<td>Surgical considerations</td>
<td>Significant residual VSD or AR</td>
<td>Not specified</td>
<td>Significant residual VSD</td>
<td>LV EF <55%, large RVOT aneurysm, severe branch pulmonary artery stenosis, significant residual left-to-right shunt, severe AR or aortic dilation</td>
</tr>
</tbody>
</table>
What is the real value of PPVI

Transcatheter Pulmonary Valve Implantation: A Comprehensive Systematic Review and Meta-Analyses of Observational Studies

Background—Transcatheter pulmonary valve implantation is approved for the treatment of dysfunctional right ventricle to pulmonary artery conduits. However, the literature is limited because of a small patient population, and it does not reflect changing procedural practice patterns over the last decade.

Methods and Results—A comprehensive search of Medline and Scopus databases from inception through August 31, 2016 was conducted using prespecified criteria. We included studies reporting transcatheter pulmonary valve implantation in at least 5 patients with a follow-up duration of 6 months or more. In 19 eligible studies, 1045 patients underwent transcatheter pulmonary valve implantation with a pooled follow-up of 2271 person-years. Procedural success rate was 94.2% (95% confidence interval [CI], 91.6–96.7%) with a conduit rupture rate of 4.1% (95% CI, 2.3–6.1%) and a target valve complication rate of 1.2% (95% CI, 0.7–2.2%). Incidence of reintervention was 4.6 per 100 person-years overall (95% CI, 3.0–6.9) with a marked reduction in studies reporting ≥75% presenting (0.9 per 100 person-years [95% CI, 1.5–3.3]) versus ≤50% presenting (5.6 per 100 person-years [95% CI, 4.6–8.5]; P=0.01). Pooled endocarditis rate was 1.4 per 100 person-years (95% CI, 0.4–5.2).

Conclusions—Our study provides favorable updated estimates of procedural and follow-up outcomes after transcatheter pulmonary valve implantation. Widespread adoption of prostenting has improved long-term outcomes in these patients. (J Am Heart Assoc. 2017;6:e006432. DOI: 10.1161/JAHA.117.006432.)

Key Words: endocarditis - Melody valve - reintervention - transcatheter pulmonary valve

<table>
<thead>
<tr>
<th>Parameter</th>
<th>No. of Studies</th>
<th>Events/100PY</th>
<th>Lower CI</th>
<th>Upper CI</th>
<th>n²</th>
<th>P Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>19</td>
<td>0.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0.0</td>
<td>0.95</td>
</tr>
<tr>
<td>Stent fracture</td>
<td>14</td>
<td>4.4</td>
<td>2.4</td>
<td>6.3</td>
<td>797</td>
<td>0.00</td>
</tr>
<tr>
<td>Type 2/3 stent fracture</td>
<td>15</td>
<td>1.3</td>
<td>0.5</td>
<td>2.0</td>
<td>533</td>
<td><0.01</td>
</tr>
<tr>
<td>Patients requiring reintervention</td>
<td>19</td>
<td>4.1</td>
<td>3.0</td>
<td>5.0</td>
<td>514</td>
<td><0.01</td>
</tr>
<tr>
<td>Celluler re-interventions</td>
<td>19</td>
<td>2.7</td>
<td>1.7</td>
<td>3.7</td>
<td>447</td>
<td>0.02</td>
</tr>
<tr>
<td>Surgical reinterventions</td>
<td>19</td>
<td>1.7</td>
<td>1.2</td>
<td>2.2</td>
<td>0.0</td>
<td>0.56</td>
</tr>
<tr>
<td>Endocarditis</td>
<td>19</td>
<td>0.8</td>
<td>0.9</td>
<td>0.0</td>
<td>119</td>
<td>0.31</td>
</tr>
<tr>
<td>PPV specific endocarditis</td>
<td>19</td>
<td>0.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0.0</td>
<td>0.70</td>
</tr>
<tr>
<td>Endocarditis requiring explantation/death/reintervention</td>
<td>19</td>
<td>0.6</td>
<td>0.3</td>
<td>0.9</td>
<td>0</td>
<td>0.88</td>
</tr>
</tbody>
</table>

Effect of prosthenting

- Stent fracture: >75% prosthenting 8, 2.3; <75% prosthenting 5, 7.2; Type 2/3 stent fracture: >75% prosthenting 9, 0.8; <75% prosthenting 5, 2.3.
- Patients requiring reintervention: >75% prosthenting 12, 2.9; <75% prosthenting 6, 6.5.
- Celluler reinterventions: >75% prosthenting 12, 1.5; <75% prosthenting 6, 4.4.
- Surgical reinterventions: >75% prosthenting 12, 1.3; <75% prosthenting 6, 2.2.
Systematic review and meta-analyses pooling studies reporting TPVI outcomes on conduit as well as non-conduit RVOTs with Melody and Edwards THV systems

- TPVI was found to have an **outstanding procedural success rate** with an acceptable complication profile and low need for surgical conversion.

- lower rates of infective endocarditis and TPV-related endocarditis

- More experience needs to be gained with non-conduit RVOT TPVI procedures as well as with using the newer generations of Edwards Sapien XT and Sapien 3 systems to draw concrete conclusions about the same

Journal of the American Heart Association. 2017;6:e006432
Originally published August 4, 2017

<table>
<thead>
<tr>
<th>Indications for Melody TPVR</th>
<th>Indications for Sapien XT/3 TPVR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence of circumferential RVOT conduit ≥ 16 mm < 24 mm at implantation and RVOT dysfunction</td>
<td>RVOT conduit > 18 mm/ < 32 mm</td>
</tr>
<tr>
<td>Pulmonary regurgitation</td>
<td>Presence of a dysfunctional non-compliant RVOT conduit</td>
</tr>
<tr>
<td>≥ Moderate PR</td>
<td>Pulmonary regurgitation</td>
</tr>
<tr>
<td>Pulmonary stenosis</td>
<td>≥ moderate PR</td>
</tr>
<tr>
<td>RVOT mean gradient (echo) ≥ 35 mmHg</td>
<td>Pulmonary stenosis</td>
</tr>
<tr>
<td>Mixed PR/PS:</td>
<td>Mean RVOT gradient (echo) ≥ 35 mmHg</td>
</tr>
<tr>
<td>One criteria from each category</td>
<td>Kenny D et al. J Am Coll Cardiol 2011;58:2248-2256.</td>
</tr>
</tbody>
</table>

Melody™
Transcatheter Pulmonary Valve (TPV)

Designed specifically for pulmonic

- Natural Bovine Jugular Vein Valve
 - Indicated for re-expansion from 18mm to 22mm

- Platinum Iridium Frame
 - 28mm length when expanded to 18mm
 - Crimped down to 6mm on delivery system

BASELINE VENTRICULOGRAPHY
POST IMPLANTATION PULMONARY ANGIOGRAPHY

Sapien 3

Sapien XT

Sapien 3
Baseline Pulmonary Angiography

Why we do this step
Final pulmonary angiography

Indications for TPV Therapy Clinical Scenarios in Patients with PR

• Meets threshold for surgical PVR, needs a valve
 • Good candidate for TPV
 • Poor candidate for surgery ???

• Does not meet threshold for surgical PVR
 • Symptomatic
 • Asymptomatic
 • Silent symptoms
 • Asymptomatic with RV dysfunction
 • At rest
 • With exercise/pharmacologic stress
 • Prophylactic (protect RV) ??
Take home message

• RV-PA conduit and “native” RVOT repairs are distinct

• Different anatomy and pathophysiology
 • “Native” RVOT: Predominant PR
 • RV-PA Conduit: Predominant PS or Mixed

• Guidelines specific to TPVR are lacking

• Timing of PVR may be a moving target

• Very good outcome of PPVI by available valves and waiting for more

THANK YOU FOR YOUR ATTENTION