Cyclocreatine: A Novel Cardioprotective Therapy Against Ischemia / Reperfusion Injury

Prof. Dr. Salwa A. Elgebaly

Founder and CEO
Nour Heart, Inc. – USA

Former, Associate Professor
University of Connecticut, Faculty of Medicine, USA

Member, FDA-Sponsored Cardiac Safety Consortium,

Outline

1. Background
 - Mechanisms of Ischemia / Reperfusion Injury

2. Problem
 - Current Pharmacologic Agents
 - Clinical Need

3. Our Solution
 - Cyclocreatine and Cyclocreatine Phosphate (CCrP)
 - Heart Attack (AMI) Model
 - Cardiopulmonary Bypass
 - Global Warm Cardiac Arrest
 - Heart Transplant Model

4. Clinical Applications

5. Conclusions
Therapy of Ischemia

Reperfusion
1. Saved Heart Muscles
2. Increased Patient Survival

Reperfusion Injury

Reperfusion Injury
Accounts for Up to 50% of the Final Infarct Size
Mechanisms of Ischemic and Reperfusion Injury

Ischemic Injury
- Acidosis
- Depletion of the Energy Source Adenosine Triphosphate (ATP)

Reperfusion Injury
- **Transitory injury:**
 - Arrhythmias
 - Myocardial stunning
- **Permanent injury:**
 - Depletion of the Energy Source Adenosine Triphosphate (ATP)
 - Inflammation
 - Apoptosis
 - Necrosis

Current Pharmaceutical Targets

Ischemic Injury
- Acidosis
- Depletion of the Energy Source Adenosine Triphosphate (ATP)

Reperfusion Injury
- **Transitory injury:**
 - Arrhythmias
 - Myocardial stunning
- **Permanent injury:**
 - Depletion of the Energy Source Adenosine Triphosphate (ATP)
 - Inflammation
 - Apoptosis
 - Necrosis
2. Problem – Failed Pharmacologic Agents

Pharmacologic Therapies to Reduce Reperfusion Injury Have Not Been So Successful

Examples of Failed Clinical Trials as Protective Agents Against Reperfusion Injury Are:

- C5a
- ICAM-1
- Corticosteroids
- Allopurinol
- Trimetazidine
- Adenosine
- Inhaled Nitric Oxide
- IV Sodium Nitrite

Clinical Problem - Chronic Heart Failure

1- The Lack of Successful Pharmacologic Therapies to Reduce Reperfusion Injury Led to an Increase in the Incidence of Chronic Heart Failure

2- Heart Failure is a Huge Socioeconomic Burden on:
 - Heart Failure Individuals
Clinical Need

Designing Novel Strategies for Clinical Cardioprotection During the Early Phase of Reperfusion is a **Major Therapeutic Goal of Modern Cardiology**

3. Our Solution and Therapeutic Targets

Ischemic Injury
- Acidosis
- Depletion of the Energy Source Adenosine Triphosphate (ATP)

Reperfusion Injury
- *Transitory injury:*
 - Arrhythmias
 - Myocardial stunning
- *Permanent injury:*
 - Depletion of the Energy Source Adenosine Triphosphate (ATP)
 - Inflammation
 - Apoptosis
 - Necrosis
Our Therapeutic Strategy

To Identify Agents that **Preserve the Energy Source ATP** and Reduce its Depletion During Ischemia & Reperfusion

Depletion of the Energy Source ATP is Associated With:

- Loss of Contractility (only 20% ATP depletion)
- Acute and Chronic Cardiac Inflammation
- Apoptosis (slow programmed death)
- Necrosis (immediate death)

Cyclocreatine and Cyclocreatine Phosphate

Creatine (Cr)
- Creatine is necessary for contractility
- Creatine Phosphate (CrP) is the source of P for ADP
- CrP stops working at low acidity in ischemic hearts

Cyclocreatine (CCr)

Cyclocreatine Phosphate (CCrP)
- CCr is a synthetic analogue of Creatine
- CCrP is more stable and superior than CrP in phosphorylating ADP to ATP during ischemia at low acidity
- CCrP continues to synthesize ATP during ischemia
Cyclocreatine Hypothesis

Mechanism of Action of Cyclocreatine and Cyclocreatine Phosphate

Cyclocreatine and Cyclocreatine Phosphate Treatment:

- Restores immediate cardiac contractility during early reperfusion
- Preserves high ATP in ischemic and perfused hearts
- Reduces circulating Nourin (cardiac-derived inflammatory mediator)
- Reduces myocardial cell inflammation
- Reduces myocardial cell injury
- Reduces myocardial edema
- Reduces myocardial acidity
- Reduces tissue apoptosis
- Restoration of cardiac contractility without arrhythmia
1. FDA Orphan Drug Designation (ODD) – January 17, 2018
 • FDA Designation for the “Prevention of Ischemic Injury in Heart Transplant”

2. U.S. Patents
 • Nine (9) Issued Patents by the U.S. Patent Office in Washington DC

3. Publications in Peer-reviewed Journals
 • American Journal of Thoracic & Cardiovascular Surgery
 • American Journal of Molecular and Cellular Cardiology
 • American Journal of Transplantation
 • American Journal Pharmacology Experimental Therapy
 • American Journal of Pathology

4. Presentations
 • American Heart Association
 • American College of Surgeons
 • American Association of Immunologists
 • American Society for Cardiovascular Angiography and Interventions
 • International Society for Heart Research (ISHR)
 • World Congress of the International College of Surgeons

Restoration of Cardiac Contractility During Early Reperfusion

Animal Models
1- Heart Attack (AMI)
2- Cardiopulmonary Bypass Surgery
3- Global Warm Cardiac Arrest
4- Heart Transplant

Species:
- Dogs
- Rats

Funded by Grants from the National Institute of Health (NIH)
and Grants from the State of Connecticut and Maryland
Heart Attack Model (LAD Occlusion)

Cyclocreatine Restores Strong Contractility
Cyclocreatine Preserves High Levels of ATP

Cyclocreatine Hearts:
- ATP synthesis continued during ischemia & reperfusion
- ATP - 85% preservation with a loss of only 15%** after 2 hours of reperfusion

Control Hearts:
- ATP - maintained only 66% with a loss of 34%** after 2 hours of reperfusion

**ATP depletion of more than 20% ceases contractility

Cyclocreatine Reduces Myocardial Cell Injury

Normal Heart

Cyclocreatine

Control Saline
Cardiac Arrest / Bypass Surgery - Dog Studies

Cardiac Arrest for 1 hour followed by reperfusion for 2 hours

Results Bypass – 1 hour Arrest
Results Bypass – 3 hour Arrest

- Cyclocreatine-treated dogs resumed contractility without arrhythmias
- Saline-treated dogs required defibrillation before resuming contractility
Global Warm Cardiac Arrest – Rat Studies

Cardioprotection and better Aortic Flow function in CCrP Hearts (HH) compared to control (UW) after 6 hrs. of Cold Storage.
Results - Heart Transplant

Reduction of weight gain in CCrP hearts (HH) Compared to Control (UW) after 6 hrs. of Cold Storage

Heart Transplant (Non-heartbeating donor) - Dog Studies

Protocol:
- *Cyclocreatine* injected IV 60 min. before ischemia
- Prolonged preservation from non-heartbeating donor:
 - Aortic cross clamp for 1 hour (warm ischemia)
 - Perfuse hearts with buffer alone and *Cyclocreatine Phosphate* for 4 hours

Measurements:
- Myocardial ATP, acidity, cell injury marker and edema
- Contractility on Langendorff apparatus
- Measure apoptosis
Results – Heart Beating & Acidity

Stop Heart Beating after Aortic Cross Clamping:
- Cyclocreatine: 9 minutes
- Controls: 2 minutes

Myocardial pH – Measured after 1 hr. arrest
- Baseline level: pH of 7.11
- Cyclocreatine: pH of 7.04 ± 0.1
- Controls: pH of 6.00 ± 0.25 and never returned back

Lactic Acidosis
- Reduced lactic acidosis in Cyclocreatine heart
- Measured by spectroscopic imaging on MRI

Results – ATP, Contractility & Cell Injury

Myocardial ATP
Three-fold increase in Cyclocreatine heart

Contractility
- Cyclocreatine: strong contractility for 1 hr. period
- Controls: declined after 15-20 min.

Intracellular Edema
Reduced in Cyclocreatine heart as measured by diffusion weighted imaging on MRI

Cell Injury Marker Malondialdehyde
Reduced level in Cyclocreatine heart
4. Clinical Applications – Predictable Ischemia

1- AMI Patients Undergoing Percutaneous Coronary Intervention (PCI)

2- Cardiopulmonary Bypass Patients Undergoing Coronary Revascularization

3- Heart Transplantation Patients

4- High Risk Patients
Administration of Cyclocreatine Phosphate

Cyclocreatine Phosphate (CCrP) Administration ‘Schedule’:

1. IV injection during ongoing myocardial infarction (after initial assessment)
2. Intracoronary injection immediately at reperfusion
3. Infuse CCrP for the first 6 hours of reperfusion
4. IV injection of CCrP daily for an additional 7 days (to preserve ATP)

Administration of Cyclocreatine Phosphate

Post AMI

1. Provide Early Protection Critical for AMI patients:
 • Who have long transport time to the hospital
 • Who cannot get timely PCI revascularization and other treatments
2. Protect Hearts Against Reperfusion Injury
3. Increase the Salvaged Myocardium (critical first 3 to 4 hrs.)
4. Reduce Infarct Size and the Incidence of Heart Failure
5. Improve Patients’ Outcome and Quality of Life
6. Ease the Burden on Health Care Systems
Cyclocreatine & Cyclocreatine Phosphate as a Potent Bioenergetic Agents:

Clinically:
- Cyclocreatine:
 Subset of children with Autism as an important energy provider in the brain

Experimentally:
- Cyclocreatine:
 Significantly enhanced skin flap survival in the rat skin transplantation model
- Cyclocreatine:
 Neuroprotective against ischemic injury - Stroke

5. Conclusion

Cyclocreatine Phosphate Treatment:
1- Protected Heart Tissue Against Ischemic and Reperfusion Injury
2- Restored Strong Contractility During Early Reperfusion

Cyclocreatine Phosphate Can:
1- Provide Early Heart Protection for AMI and Surgical Patients
2- Reduce the Incidence of Chronic Heart Failure
3- Improve Patients’ Outcome and Quality of Life
4- Protect High Risk Patients from Myocardial Infarction
Thank You.

Prof. Dr. Salwa A. Elgebaly
selgebaly@nourheart.com