MI Mechanical Complication Case Based

Ali Emin Denktas, MD, FACC, FSCAI
Associate Professor of Medicine
Baylor College of Medicine
Clinical Associate Professor of Medicine
UT McGovern Medical School
Director, Cardiac Catheterization Laboratories
Michael E. DeBakey VAMC, Houston, TX

Mechanical Complications

• Cardiogenic Shock
• Right Ventricular Infarction
• Papillary Muscle Rupture
• Ventricular Septal Defect
• Free Wall Rupture
• Conduction Abnormalities
Right Ventricular Infarction

Pathological studies evidence of RV infarction in 20 - 50% of inferior infarcts
Significant hypotension or cardiogenic shock resulting from RV infarction occurs in approximately 10% of inferior infarcts

Clinical Findings
Classic physical findings include: hypotension, elevated JVP, clear lung fields
Right Ventricular Infarction

In-Hospital Complications

Zehender, NEJM, 1993

RV infarct and implications on Mortality

Mehta, 2001
Diagnosis

- ECG: ST segment elevation in leads V₃ or V₄R (most specific test)
- Hemodynamics: elevated right atrial and RVED pressure (>12), normal to low pulmonary pressures, low (<15) PCWP, low C.O.
- Echocardiography: RV enlargement with depressed function in setting of inferior LV hypokinesis, + TR

Differential Diagnosis

- Several equally serious conditions can present with similar findings both on clinical exam and diagnostic tests, especially pulmonary embolus and pericardial tamponade.
- PE, constrictive pericarditis and tamponade may have similar hemodynamics
- PE may have similar echo features
- Remember V₃, V₄ R
Principles of Management

- Stabilization and reperfusion are the hallmarks of treatment. If patients can survive the initial 2-5 days, RV function typically improves.
- Hemodynamic monitoring and fluid administration to achieve PAWP of 15-18 mm Hg. If patients do not respond with an increase in C.O., dobutamine should be added. IABP may be necessary in some cases.

Principles of Management

- Avoid “pushing” fluids beyond above parameters. RV overdistention can cause RV MVO₂ and actually decrease C.O. by increasing intrapericardial pressure and limiting LV filling.
- Maintenance of AV synchrony is important to maintain RV filling.
Principles of Management

• Reperfusion therapy, particularly when patency of RV branches is achieved can dramatically restore RV function and overall hemodynamic stability
• Successful reperfusion has been associated with marked reduction in mortality (2% vs 58% in 1 study) and in-hospital complications

RV Function Following Infarction

Bowers, NEJM, 1998
Potential Reasons for Improvement in RV Function

• Favorable O₂ Supply / demand characteristics
• RCA - RA pressure differential
• Thin RV wall - ? direct perfusion from RV
• Low afterload
• Greater collateral potential
 – LAD
 – Conus

Conclusions

• RV infarction significantly increases the morbidity and mortality associated with inferior MI
• Cardiogenic shock from RV infarction has a lower mortality than that of cardiogenic shock from LV infarction
• Reperfusion therapy greatly improves in-hospital morbidity and mortality from RV infarction
• Prognosis of hospital survivors is excellent and RV function generally improves over time
Things to Remember About RV Infarction

• Beware of pseudo RV infarcts (PE, tamponade, constriction)
• V_3/V_4R leads are the most specific for RV infarct
• Do what it takes to support hemodynamics
• Long term survival is good and RV function will improve if patient can get through the first few days

Acute Severe Mitral Regurgitation
MR patient

- 76 M with DM, CVA x2 - last 2012- able to walk with cane, but recently has not been walking due to SOB with minimal exertion for 4-6 weeks.
- Much more SOB for last few days - even at rest. One episode of mild chest pain for ~30 minutes before coming to the ER. NO prior episode of chest pain. Still feels quite SOB.
To OR

- Patient went to OR that night with LIMA to LAD and Mitral valve replacement
- Discharged but ended up in a nursing home for rehab

MR patient 2

- 66 WM with acute cardiogenic shock s/p MI
- Pt has history of dm, htn, hld presented with 3 days of CP and SOB. Also left shoulder pain, upper back pain. Presented to the ER and diagnosed with posterior MI, taken urgently to cath lab
Before the Cardiac Cath

- Patient did not look right
- HR 100-110
- SBP 90mmHg
- Pale
- Diaphoretic
- No murmur
Outcome

- Initially IABP, then Tandem Heart
- Stabilized
- Surgery next morning
- Doing well for 3 days
- Sudden drop in BP
- Opened bedside
- Myocardial Rupture

Incidence and Etiology

- Uncommon, <1% of total infarcts, but 5-10% of patients with cardiogenic shock
- Papillary muscle dysfunction
- Partial or complete tear of the papillary muscle
- Almost always associated with inferior infarction (~90%)
- Posterior papillary muscle usually responsible due to its single blood supply from the dominant coronary artery
Papillary Muscle Rupture vs Dysfunction

<table>
<thead>
<tr>
<th></th>
<th>Rupture N=31</th>
<th>Dysfunction N=16</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>67± 7</td>
<td>60±8</td>
<td><0.005</td>
</tr>
<tr>
<td>Male</td>
<td>79%</td>
<td>69%</td>
<td>ns</td>
</tr>
<tr>
<td>Hypertension</td>
<td>58%</td>
<td>50%</td>
<td>ns</td>
</tr>
<tr>
<td>DM</td>
<td>7%</td>
<td>38%</td>
<td><0.005</td>
</tr>
<tr>
<td>Prior MI or Angina</td>
<td>26%</td>
<td>50%</td>
<td><0.002</td>
</tr>
<tr>
<td>Diagnosis to surgery (days)</td>
<td>14</td>
<td>45</td>
<td><0.002</td>
</tr>
</tbody>
</table>

Calvo, EHJ,1997

Acute Mitral Regurgitation

Papillary Muscle Rupture vs Dysfunction

<table>
<thead>
<tr>
<th></th>
<th>Rupture</th>
<th>Dysfunction</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 vessel</td>
<td>44%</td>
<td>13%</td>
<td><0.05</td>
</tr>
<tr>
<td>2 vessel</td>
<td>32%</td>
<td>53%</td>
<td>ns</td>
</tr>
<tr>
<td>3 vessel</td>
<td>23%</td>
<td>33%</td>
<td>ns</td>
</tr>
<tr>
<td>EF</td>
<td>61±14%</td>
<td>46±15%</td>
<td><0.03</td>
</tr>
<tr>
<td>Mortality in hosp</td>
<td>46%</td>
<td>47%</td>
<td>ns</td>
</tr>
<tr>
<td>Mortality f/u</td>
<td>15%</td>
<td>13%</td>
<td>ns</td>
</tr>
</tbody>
</table>

Calvo, EHJ,1997
Papillary Muscle Rupture - Clinical Presentation

• Rupture occurs primarily within the first week following infarction (>75% of cases)

• Acute pulmonary edema is the most common presentation. Over 1/2 of patients in Mayo series had cardiogenic shock

• Murmur of MR variable, may be minimal or absent in low output states (18% of Mayo series had no murmur)

• Apical thrill rarely present (in contrast to VSD)
Papillary Muscle Rupture - Diagnosis

• Echocardiography is the diagnostic test of choice. If severe MR is found TEE should be performed to optimally visualize papillary muscles.

• Right heart catheterization typically shows large “V” waves on the PAWP tracing

• Differential diagnosis: VSD, infarct extension with cardiogenic shock
Papillary Muscle Rupture - Diagnosis

LV, LA pressure in PM rupture

Management

• Majority of patients require mechanical ventilation
• IABP, nitroprusside and / or dobutamine for acute stabilization
• Emergent coronary angiography
• Mitral valve repair / replacement + CABG ASAP!! Surgical delay = increased mortality
Things to Remember About Acute, Severe MR

- Associated with inferior infarcts (90%)
- Posteromedial Papillary muscle usually involved
- High % single vessel disease, good EF
- Murmur may not be impressive
- Pulmonary edema, Cardiogenic shock most common presentation
- Echo, TEE best diagnostic test
- Early surgery with CABG
- Excellent long term survival in hospital survivors

Postinfarction Ventricular Septal Defect
Ventricular Septal Defect

Incidence

• Uncommon, <1% of total infarcts, but 2-5% of patients with cardiogenic shock

Anatomic Features

• ~ 55% due to inferior infarction, ~ 45% due to anterior infarction
• Inferior infarct VSD’s are located in the posterobasal region of the septum, anterior VSD’s in the apical septum
• Conduction abnormalities common (~1/3 in 1 series)
Ventricular Septal Defect

Patient Characteristics

• Mean age >65 in virtually all series
• Hypertension present in ≥50% of patients
• Typically first infarct, most patients have no antecedent angina
• High percentage of single vessel disease
• VSD usually occurs within the first week after MI, approximately 50% in the first 48 hours

Ventricular Septal Defect

Clinical Presentation

• Like acute MR most patients develop acute onset of biventricular failure or cardiogenic shock (~ 50/50)
• Classically, patients have a new holosystolic murmur and a precordial thrill
• Magnitude of L → R shunt (and characteristics of murmur) inversely proportional to size of infarct and directly related to residual LV function
Ventricular Septal Defect

Diagnosis and Management

- Echo/Doppler is the best diagnostic tool
- “Step up” in RV saturation characteristic. Large “V” waves often seen on PAWP tracing - can be confused with MR
- IABP, dobutamine, nitroprusside for acute stabilization
- Mortality 100% without surgery
- Timing of surgery remains somewhat controversial

Ventricular Septal Defect

Long Term Outcome

- Hospital survivors have very favorable long term outcome.
- 1 year survival rates are approximately 70%
- 7-10 actuarial survival 60 - 65%
- Most patients NYHA Class 1 or 2
Ventricular Septal Defect

Things to Remember About Postinfarction VSD’s

• Approximate equal distribution between anterior and inferior infarcts
• High percentage of single vessel disease, first time infarcts
• Similar presentation to acute MR but pulmonary edema less prominent
• Degree of shunt inversely proportional to size of infarct
• Right heart cath data can be misleading → Echo

Postinfarction Free Wall Rupture
• 68 year old man with history of hypertension, diabetes, smoking who was brought to the ER by the EMS after being found lethargic
• Called perfusionist
• Placed ECMO
• CV surgery

Autopsy
• Acute/subacute myocardial infarction of the posterior left ventricle with wall rupture
• Hemopericardium (150ml) with clot formation
• Cardiomegaly (453g) with biventricular hypertrophy
• Coronary artery atherosclerosis, moderate, s/p stent placement
• Small aneurysms of iliac arteries
Free Wall Rupture

- “Classic” patient: elderly (>70) female with hypertension
- Usually presents as a catastrophic event - EMD due to tamponade. Syncope and shock also common.
- Time course for rupture, prevalence of single vessel disease similar to papillary muscle rupture (PMR) and VSD
- Point of rupture typically at the juncture of normal and infarcted myocardium
- Unlike PMR and VSD, circumflex is often culprit vessel (~ 40% in 1 series)

Free Wall Rupture

- Primary PTCA and early thrombolysis may reduce the incidence of rupture
- Late thrombolysis may increase the incidence of rupture
- *Rarely*, rupture is a subacute process. With prompt diagnosis and surgery these patients may be salvageable
- Echo is the diagnostic modality of choice. Any pericardial effusion in a patient with sudden hemodynamic compromise should suggest the diagnosis. Effusions with echo dense structures (clot) characteristic
Free Wall Rupture

- Mortality in patients who make it to surgery: 33%
- Long term outlook for surgical survivors is good: 13/16 alive (mean f/u 30 mo), 11 NYHA class 1

(Purcaro, et al, AJC, 1997)

Thank you