Acute myocardial infarction (AMI) during pregnancy or in the postpartum period is rare.

The risk of AMI is three to four times more in pregnancy relative to nonpregnant females of reproductive age group.
In the United States, the incidence of pregnancy-associated AMI is approximately 0.0062% (6.2/100,000).

Age of patients ranged from 17 to 52 years old; 38-43% were older than 35 years. Multigravidas were found to have more PAMI.

The pathophysiological mechanism of PAMI is complex. Angiographically or on autopsy, pregnancy-related spontaneous coronary artery dissection (P-SCAD) was reported in 27–43% of patients.
However, the true incidence of P-SCAD may be underestimated for three reasons:

1. initial presentation as sudden death,
2. underuse or avoidance of coronary angiography in young women, and
3. under-recognition of angiographic characteristics of the disease.

Pregnancy-related spontaneous coronary artery dissection (P-SCAD) is not typically associated with the traditional risk factors for coronary artery disease (diabetes, hypertension, smoking, family history, and hyperlipidemia).
Pregnancy-related spontaneous coronary artery dissection (P-SCAD) can occur at any time in pregnancy or after delivery and has been described in women 2 weeks post conception up to 6 weeks postpartum.

There are no controlled randomized trials, so there are no guidelines for optimal treatment of this challenging condition.
Letter to the Editor

Treatment of acute myocardial infarction in pregnancy with coronary artery balloon angioplasty and stenting: Use of tirofiban and clopidogrel

Bilal Boztosun a,*, Ayhan Olcay b, Anil Avci a, Cevat Kirma a

a Kartal Kosyata Heart Education and Research Hospital, Department of Cardiology, Istanbul, Turkey
b TDD 29 Mayis Hospital, Department of Cardiology, Istanbul, Turkey

Received 15 January 2007; received in revised form 19 April 2007; accepted 23 April 2007
Available online 25 July 2007

Abstract

Acute myocardial infarction (AMI) in pregnancy is rare and has a high mortality rate of 37–50%. The most important risk factors are

RESEARCH LETTER

ACUTE MYOCARDIAL INFARCTION DURING PREGNANCY

Yu-Ching Chen1, Yung-Ming Chang2, Guang-Perng Yeh1,2, Hsing-Der Tsai1,
Charles Tsung-Che Hsieh3

1Department of Obstetrics and Gynecology, and 2Division of Cardiology, Department of Internal Medicine,
Changhua Christian Hospital, Changhua, and 3Department of Obstetrics and Gynecology,
Chung-Shan Medical University, Taichung, Taiwan

Acute myocardial infarction (MI) is very uncommon and was localized in the retrosternal region, without radiographic

*Correspondence to: Dr Charles Tsung-Che Hsieh, Department of Obstetrics and Gynecology, Changhua
Christian Hospital, 135, Nanhsiao Street, 500, Changhua, Taiwan.
E-mail: 401129@ccch.org.tw
Accepted: May 9, 2008
Taiwan J Obstet Gynecol, June 2008 Vol 47 - No 2
Case Report

Acute myocardial infarction during pregnancy: A clinical checkmate

Abhishek Jaiswal*, Mahjabeen Rashid, Mark Balek, Chong Park

New York Hospital Queens, Weill Medical College of Cornell University, New York 11385, USA

Abstract

Acute myocardial infarction (AMI) in pregnancy is associated with high morbidity and...
Clinical Communications: OB/GYN

PREGNANCY-RELATED SPONTANEOUS CORONARY ARTERY DISSECTION: A CASE SERIES AND LITERATURE REVIEW

Emily Rose, MD, PA-C, FASEM, FACEP,† Maheedhar Gedela, MD, ‡ Nathan Miller, MD, † and Paul L. Carpenter, MD, FACCP.

*Department of Emergency Medicine, Keck School of Medicine of the University of Southern California, LAC-USC Medical Center, Los Angeles, California, †Department of Internal Medicine, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota, and ‡Department of Cardiology, University of South Dakota Sanford School of Medicine, Sioux Falls, South Dakota.

Reprint Address: Emily Rose, MD, PA-C, FASEM, FACEP, Department of Emergency Medicine, LAC-USC Medical Center, 1200 North State Street, Los Angeles, CA 90033.

Case Series of Pregnancy-Related Spontaneous Coronary Artery Dissections

<table>
<thead>
<tr>
<th>Case</th>
<th>Year</th>
<th>Age, y</th>
<th>Gravida/Para</th>
<th>Days Postpartum</th>
<th>Symptoms</th>
<th>ECG</th>
<th>Diagnosis</th>
<th>Coronary Vessel Dissected</th>
<th>Management</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1983</td>
<td>27</td>
<td>G1P4</td>
<td>1</td>
<td>Mid-axillary chest pressure “heaviness” for 15 h, RUE, LUE, and jaw pain</td>
<td>Anterolateral STE</td>
<td>Autopsy</td>
<td>LM, LAD, LCX</td>
<td>Heparin (for presumed PE); Bann-metal stent</td>
<td>Death</td>
</tr>
<tr>
<td>2</td>
<td>1985</td>
<td>32</td>
<td>G1P1</td>
<td>75</td>
<td>Constant chest “heaviness”</td>
<td>STEV3-V5, TWI V1-V2</td>
<td>Cardiac cath</td>
<td>Proximal LAD</td>
<td>Asymptomatic with 37% LV function at 3 y</td>
<td>Asymptomatic with normal LV function at 3 y</td>
</tr>
<tr>
<td>3</td>
<td>2003</td>
<td>34</td>
<td>G4P4</td>
<td>14</td>
<td>Mid-axillary chest pain, RUE, LUE, and jaw pain</td>
<td>STEV4-V6</td>
<td>Cardiac cath</td>
<td>LAD</td>
<td>Medical management</td>
<td>Mid CHF, EF 55% in 2006, AICD placed in 2010</td>
</tr>
<tr>
<td>4</td>
<td>2003</td>
<td>33</td>
<td>G5P5</td>
<td>14</td>
<td>Mid-axillary chest pain (rated 7/10)</td>
<td>STE anterolateral leads</td>
<td>Cardiac cath</td>
<td>LAD, LCMX (basal RCA)</td>
<td>Thrombolysis (at outside ED); Thrombectomy; medical management</td>
<td>Mid SOB, EF 55%</td>
</tr>
<tr>
<td>5</td>
<td>2008</td>
<td>33</td>
<td>G1P8</td>
<td>Substantial chest pain with radiation to RUE</td>
<td>Anterior peaked TW, b0lilaric III, aVF</td>
<td>Cardiac cath</td>
<td>LAD, DCA</td>
<td>Cardiac cath</td>
<td>CAGB</td>
<td>EF 50%-55% in 2013</td>
</tr>
<tr>
<td>6</td>
<td>2012</td>
<td>29</td>
<td>G8P8</td>
<td>Substantial chest pain</td>
<td>Anterior “heaviness” with radiation to LUE</td>
<td>Anterior STE</td>
<td>Cardiac cath</td>
<td>LM</td>
<td>CAGB</td>
<td>Resolved</td>
</tr>
</tbody>
</table>

AICD = automatic internal cardioverter defibrillator; CABG = coronary artery bypass graft surgery; CHF = congestive heart failure; ECG = electrocardiogram; ED = emergency department; EF = ejection fraction; LAD = left anterior descending; LCMX = left circumflex; LM = left main; LUE = left upper extremity; LV = left ventricular; PE = pulmonary embolism; RCA = right coronary artery; RUE = right upper extremity; SOB = shortness of breath; STE = ST segment elevation; TWI = T-wave inversion.
During pregnancy, maternal blood is highly thrombogenic because it contains an increased concentration of clotting factors with increased platelets adhesiveness and decreased fibrinolysis.
The pathogenesis of P-SCAD remains unclear, especially in the peripartum period. Increased levels of estrogen and progesterone, enhanced vascular reactivity, or thrombophilia due to pregnancy related hypercoagulability may be potential underlying causes.

Moreover, estrogen and progesterone are thought to produce biochemical and structural changes in arterial walls, such as loss of normal elastic fibers, fragmentation of reticular fibers, and decreases in volume of acid mucopolysaccharides.
Moreover, accumulation of released eosinophils and proteases may further lead to cystic medial necrosis. Elevated cardiac output during pregnancy may enhance wall stress, particularly during labor, accompanying cystic medial necrosis and resulting in greater intramural hematoma and subsequent coronary dissection.

Other contributing factors include intense exercise, oral contraceptives, cocaine use, and strain of labor aggravate the shear stress on vulnerable blood vessels.
In P-SCAD, these factors lead to the hemorrhagic segregation of the epicardial coronary artery media, with or without intimal disruption, and creation of a false lumen within the vessel wall.

In contrast to the localized vessel wall involvement associated with coronary artery disease, P-SCAD frequently affects multiple coronary arteries with a higher incidence of anterior myocardial wall territories.

Clinicians may not consider AMI and might be distracted by more common differential diagnoses in young pregnant female, without significant cardiac risk factors, mimicking an acute pulmonary embolism.

The diagnostic modality of P-SCAD also poses a significant challenge. Coronary angiography is a widely used clinical tool in diagnosing SCAD. However, careful application of angiography in the coronary catheterization laboratory is necessary to preclude the iatrogenic extension of the dissection.
Optical coherence tomography (OCT) or intravascular ultrasound (IVUS) can be used to enhance diagnostic capability and assist with guided percutaneous coronary intervention (PCI).

Although coronary CT angiography (CCTA) recognizes the SCAD, but the sensitivity of detection for this modality is unclear. Furthermore, CCTA has potential significant teratogenic and carcinogenic effects on the fetus due to the large dose of radiation.
There is no established consensus on management of spontaneous coronary artery dissection.

Treatment options for P-SCAD include conservative medical therapy, PCI, coronary artery bypass graft surgery (CABG), or heart transplantation. Thrombolytic therapy may be indicated for an AMI not due to a SCAD.
Thrombolytic therapy is not recommended, as it may propagate the dissection and exacerbate coronary vasospasm. Heparin and glycoprotein IIb/IIIa inhibitors are also contraindicated due to the potential of worsening the intramural hematoma.

Conservative therapy may be reasonable management in hemodynamically stable patients with P-SCAD. This management may be preferred in some cases, as intervention has associated risks, and many dissections resolve spontaneously within 4 weeks up to 1 year documented by follow-up coronary angiogram.
Intracoronary stent placement is favored for a distinct localized lesion of a single coronary artery without the involvement of left main coronary artery (LMCA).

The rate of successful PCI in SCAD is only 65% due to wire migration into the false lumen, as well as propagation of dissection or hematoma from stent implantation. As such, once PCI is performed, the use of intracoronary imaging to detect extent of dissection, coupled with direct stent techniques, may be the best choice.

CABG is the treatment of choice in patients with multivessel involvement or LMCA or ostial LAD dissection.

Despite these modalities, it remains difficult to achieve successful revascularization without complication.
Though the actual mortality rate is unknown, patients who survive the initial episode of P-SCAD tend to have a favorable prognosis. In some patients, unremitting severe LV systolic dysfunction despite optimal medical management can occur.

Recurrence rate in P-SCAD is unknown. Due to potential risk and high associated morbidity and potential mortality, subsequent pregnancy is discouraged after a patient develops P-SCAD.
Although there are some controversies concerning the preferred mode of delivery, vaginal delivery is thought to be superior to cesarean section in pregnant women with acute MI because vaginal delivery avoids surgical morbidity, decreases hemodynamic fluctuations, and usually results in less blood loss. Most authors recommend epidural analgesia during labor.

Cesarean section is only recommended based on obstetric indications and in patients with unstable ischemic or hemodynamic conditions.
Effects of Cardiovascular Drugs on Fetus During Pregnancy

<table>
<thead>
<tr>
<th>DRUG</th>
<th>POTENTIAL FETAL SIDE EFFECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenergic blocking agents</td>
<td>Likely safe, no known teratogenic effect</td>
</tr>
<tr>
<td>Angiotensin-converting enzyme inhibitors</td>
<td>Contraindicated, HUGR, oligohydramnios, renal failure, abnormal bone ossification</td>
</tr>
<tr>
<td>Angiotensin II receptor blockers</td>
<td>Contraindicated, renal malformations, oligohydramnios, abnormal bone ossification</td>
</tr>
<tr>
<td>Aspirin</td>
<td>Safe; low-dose aspirin not harmful, high-dose aspirin associated with premature fetal duct closure</td>
</tr>
<tr>
<td>Antiprostaglandin drugs</td>
<td>Contraindicated, maternal chemosis, hydrocephalus, maternal infection, preterm delivery</td>
</tr>
<tr>
<td>Beta blockers</td>
<td>Relatively safe, hypoglycemia, maternal hypoglycemia, maternal hypoglycemia, maternal hypertension</td>
</tr>
<tr>
<td>Calcium channel blockers</td>
<td>Relatively safe, few data; concern regarding bone loss at time of delivery, calcium channel blockers</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Safe; no adverse effects</td>
</tr>
<tr>
<td>Placental blockers</td>
<td>Relatively safe, limited data; used to treat fetal anemiales</td>
</tr>
<tr>
<td>Hydralazine</td>
<td>Relatively safe, increased risk of placental bleeding, maternal hypertension</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>Safe, caution regarding maternal hypotension, reduced placental blood flow</td>
</tr>
<tr>
<td>Probenecid</td>
<td>Safe, increased risk of placental syndrome, maternal hypertension</td>
</tr>
<tr>
<td>Prednisolone</td>
<td>Safe, limited data; has been used to treat fetal anemiales, no major fetal side effects</td>
</tr>
<tr>
<td>Salbutamol</td>
<td>Safe; often used to treat fetal anemiales</td>
</tr>
<tr>
<td>Statins</td>
<td>Contraindicated, congenital anomalies</td>
</tr>
<tr>
<td>Warfarin</td>
<td>Warfarin embryopathy when used between 6 and 12 weeks gestation, placental and fetal hemorrhage, central nervous system anomalies</td>
</tr>
</tbody>
</table>

Take Home Message

AMI during pregnancy has high maternal as well as fetal mortality and morbidity and therefore highly relevant for physicians taking care of the primary assessment and resuscitation of pregnant women.
Take Home Message

Thrombolytics should be avoided during AMI in pregnancy without knowledge of coronary anatomy, as it may potentially complicate coronary dissection cases by increasing the risk of hemorrhage and further progression of the dissection.

Take Home Message

Coronary angiography is underutilized for this patient population due to radiation safety concerns. This not only helps in differentiating coronary spasm and coronary artery dissection from atherosclerotic disease but also provides a therapeutic tool.
In an urgent or emergent clinical setting, the interventionalist must make decisions and recommendations that include the knowledge that the life of the conceptus depends upon the life of the mother and that speed may be a crucial factor in decision-making.

Each case must be evaluated individually, based on the aforementioned factors, to determine whether to perform revascularization through percutaneous or surgical approach.
Thank You