Role of Imaging in Aortic Valve Intervention

Dr Galal Elkilany
A professor of cardiology
SHU, UAE
Consultant Cardiologist
MedCare Hospital UAE

Aortic Valve Incompetence
Recommendations for classification of AS severity

<table>
<thead>
<tr>
<th>Specific signs for AR severity</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Central Jet, width < 25% of LVOT</td>
<td>No or brief early diastolic flow or reversal in descending aorta</td>
<td>Signs of AR present but no criteria for severe AR</td>
<td>Central Jet, width ≥ 65% of LVOT</td>
</tr>
<tr>
<td>Vena contracta < 0.3 cm²</td>
<td>Vena contracta > 0.6 cm²</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supportive signs</th>
<th>Pressure half-time > 500 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal LV size</td>
<td>Intermediate values</td>
</tr>
<tr>
<td>Pressure half-time < 200 ms</td>
<td></td>
</tr>
<tr>
<td>Holodiastolic aortic flow reversal in descending aorta</td>
<td></td>
</tr>
<tr>
<td>Moderate or greater LV enlargement</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quantitative parameters*</th>
</tr>
</thead>
<tbody>
<tr>
<td>R Vol, ml/beat</td>
</tr>
<tr>
<td>RF %</td>
</tr>
<tr>
<td>EROA, cm²</td>
</tr>
</tbody>
</table>

AR, Aortic regurgitation; EROA, effective regurgitant orifice area; LV, left ventricle; LVOT, left ventricular outflow tract; R Vol, regurgitant volume; RF, regurgitant fraction.

*LV size applied only to chronic lesions. Normal 2D measurements: LV minor-axis ≤ 2.8 cm², LV end-diastolic volume ≤ 82 ml/m² (2).
• At a Nyquist limit of 50-60 cm/s.

**In the absence of other etiologies of LV dilatation.

*Quantitative parameters can help sub-classify the moderate regurgitation group into mild-to-moderate and moderate-to-severe regurgitation as shown.

** Continuity equation

With the continuity equation you will be able to calculate the aortic valve area. The principle of the continuity equation is that the amount of flow before the valve (left ventricular outflow) equals the amount of flow across the valve:

\[
\text{Flow through LVOT} = \text{Flow through LVOT TVI} = \text{Flow through LVOT TVI}
\]

\[
\text{Aortic valve area} = \frac{\text{LVOT area} \times \text{LVOT TVI}}{\text{Aortic TI}}
\]

\[
\text{Aortic valve area} = \frac{\text{Flow} \times \text{time velocity integral (TVI)}}{\text{Aortic TI}}
\]
1. Measurement of LVOT diameter
 - parasternal long axis
 - zoom on the aortic valve
 - measurement of the aortic annulus diameter, at proto-diastole
 - value should be around 18-25 mm

2. Measurement of LVOT TVI
 - apical 5 chamber
 - pulsed Doppler at the level of the LVOT
 - negative flow (going away from the probe)
 - trace the envelope of the flow

3. Measurement of aortic TVI
 - apical 5 chamber
 - continuous Doppler across the valve
 - negative flow, high velocity
 - trace the envelope of the flow

PHILIPS
AHMED WASFI
DRGALA 639727-2
THUMBAY HOSPITAL, AJ
X5-1Adult
FX 3.1Hz 18m
2D L/M/M 2D 70%
LV 50 P low
EDV (MM-Tech) 150 ml
IVS/ LVFW (MM) 0.80
IVS % (MM) 15.9%
ESV (MM-Tech) 183 ml
SV (MM) 105 ml
EF (MM-Tech) 52.8%
LV PW % (MM) 3.01%
Imaging in Aortic Stenosis

Recommendations for classification of AS severity

<table>
<thead>
<tr>
<th></th>
<th>Aortic sclerosis</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aortic jet velocity</td>
<td><2.5 m/s</td>
<td>2.6-2.9</td>
<td>3.0-4.0</td>
<td>>4.0</td>
</tr>
<tr>
<td>Mean gradient</td>
<td><20 (<30(^a))</td>
<td>20-40(^b) (30-50(^a))</td>
<td>>40(^b) (>50(^a))</td>
<td></td>
</tr>
<tr>
<td>AVA (cm(^2))</td>
<td>>1.5</td>
<td>1.0-1.5</td>
<td><1</td>
<td></td>
</tr>
<tr>
<td>Indexed AVA (cm(^2)/m(^2))</td>
<td>>0.85</td>
<td>0.60-0.85</td>
<td><0.6</td>
<td></td>
</tr>
<tr>
<td>Velocity ratio</td>
<td>>0.50</td>
<td>0.25-0.50</td>
<td><0.25</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)ESC Guidelines.[2]

\(^b\)AHA/ACC Guidelines.[3]
EAE/ASE RECOMMENDATIONS Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice

• Echocardiography has become the standard means for evaluation of aortic stenosis (AS) severity. Cardiac catheterization is no longer recommended except in rare cases when echocardiography is non-diagnostic or discrepant with clinical data.

• However, although accurate quantitation of disease severity is an essential step in patient management, clinical decision making depends on several other factors, most importantly symptom status.
Hybrid Lab.

- The use of fluoroscopy combined with two-dimensional and 3D echocardiography can improve the confidence of correct prosthetic valve placement. The sonographer should repeatedly alternate between biplane and 3D live mode in the long-axis view to allow the interventional and imaging cardiologists to obtain a better understanding of catheter location. Prosthetic location can be improved by the imaging team (cardiologist and sonographer) attempting to visualize the ventricular and aortic edges of the prosthesis.
• Immediately after deployment of the prosthetic valve, the presence of perivalvular aortic regurgitation is assessed. It is important for the sonographer to display the aortic regurgitation using the biplane method with color in the long-axis view to distinguish between transvalvular and perivalvular jets. While assessment for perivalvular aortic regurgitation can be performed prior to catheter removal.
Low Flow Aortic Stenosis

- Aortic stenosis is the 3rd most common CV disease after HTN and CAD (in western world)
- Prevalence is 2-7% over the age of 65 years
- Evaluation of aortic stenosis is the most challenging of all valvular heart diseases

Aortic Stenosis

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet velocity (m/s)</td>
<td>Less than 3.0</td>
<td>2.0-4.0</td>
<td>Greater than 4.0</td>
</tr>
<tr>
<td>Mean gradient (mm Hg)*</td>
<td>Less than 25</td>
<td>25-40</td>
<td>Greater than 40</td>
</tr>
<tr>
<td>Valve area (cm²)</td>
<td>Greater than 1.5</td>
<td>1.0-1.5</td>
<td>Less than 1.0</td>
</tr>
<tr>
<td>Valve area index (cm²/m²)</td>
<td>Less than 0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GRADIENT = FLOW DEPENDENT VARIABLE

Gradient calculation: \(\Delta P = 4AV^2 \)

Small reduction in flow can cause great reductions in gradient.

Flow Diagram

Flow = CSA x Velocity
MISMATCH BETWEEN GRADIENTS AND VALVE AREA

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet velocity (m/s)</td>
<td>Less than 3.0</td>
<td>3.0-4.0</td>
<td>Greater than 4.0</td>
</tr>
<tr>
<td>Mean gradient (mm Hg)*</td>
<td>Less than 25</td>
<td>25-40</td>
<td>Greater than 40</td>
</tr>
<tr>
<td>Valve area (cm²)</td>
<td>Greater than 1.5</td>
<td>1.0-1.5</td>
<td>Less than 1.0</td>
</tr>
<tr>
<td>Valve area index (cm²/m²)</td>
<td>Less than 0.6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. INDEXING TO BSA
2. INACCURACY IN CALCULATION OF LVOT DIAMETER
3. WHO SAID AVA < 1.0 CORRESPONDS TO GRADIENTS > 40 ???
4. LOW FLOW STATE ([DEFINED SVI <35 ml/m²])
Aortic Stenosis

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Mild</th>
<th>Moderate</th>
<th>Severe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jet velocity (m/s)</td>
<td>Less than 0.9</td>
<td>0.9-1.0</td>
<td>Greater than 1.0</td>
</tr>
<tr>
<td>Mean gradient (mm Hg)</td>
<td>Less than 20</td>
<td>21-40</td>
<td>Greater than 40</td>
</tr>
<tr>
<td>Valve area (cm²)</td>
<td>Greater than 1.5</td>
<td>1.5-2.0</td>
<td>Less than 1.0</td>
</tr>
<tr>
<td>Valve area index (cm²/m²)</td>
<td>Less than 0.4</td>
<td>0.4-0.6</td>
<td>Greater than 0.6</td>
</tr>
</tbody>
</table>

INDEXING TO BSA

Eg: AVA of 0.9 cm², BSA=1.3, iAVA= 0.7 cm²/m²

AVA of 1.2 cm², BSA=2.1, iAVA= 0.57 cm²/m²

Case Scenario

• H/O
 72 yr old Man
 HTN,
 Dyslipidemia,
 CAD
• C/O
 DOE & AOE
 CLASS II

• AV
 GRADIENTS=43/28
• LVEF= 32 %
• iAVA= 0.5 cm²
Case Scenario

* H/O
 72 yr old Man
 HTN,
 Dyslipidemia,
 CAD
* C/O
 DOE & AOE
 CLASS II

- AV
 GRADIENTS=43/28
- LVEF= 52 %
- iAVA= 0.5 cm²

Causes of low flow state

* Till 2007 → low flow due to LOW EF

* NOW → low flow can also be secondary to Preserved EF
 “new entity” → Paradoxical Low flow AS
How to assess cardiac function in Paradoxical Low Flow AS with Normal EF
Bulls eye technique (automated function imaging algorithm) generated from apical 2,3 & 4 chamber views illustrated the impaired global longitudinal peak systolic strain (GLPSS) of -13% in patient with significant mitral incompetence but normal ejection fraction (EF = 51%) , note that : MR+dp/dt = 645mmhg/s only

Galal Elkilany et al

Index of Myocardial Performance (RIMP)

- Normal: ET
- Abnormal: ET

IVCT + IVRT

Normal 0.28 ± 0.04
PATHOPHYSIOLOGY

- LOW FLOW secondary to LOW EF
- LOW EF is due to myocardial dysfunction

"whether this myocardial dysfunction is
- secondary to AS
- secondary to other causes, or
- primary myocardial disease, needs to be evaluated"

MYOCARDIAL DYSFUNCTION SECONDARY TO CAUSES OTHER THAN AS

- DILATED CARDIOMYOPATHIES (1st MYOCARDIAL DYSFUNCTION)

- ISCHEMIC HEART DISEASE

- HTN HEART DISEASE (AFTER LOAD MISMATCH)

In all these patients, AVA was misjudged as <1.0 due to incomplete opening of AV due to low EF and
labelled as “PSEUDO SEVERE AS”
MYOCARDIAL DYSFUNCTION
SECONDARY TO AS

- “True severe AS”
- Removal of the only afterload-AS can lead to dramatic improvements in patients’ symptoms/survival compared to medical therapy alone
DIAGNOSIS

- FIRST SUSPICION → GRADIENT-AVA MISMATCH during routine echo
- GRADIENT < 40 mmHg, AVA < 1.0, EF < 40 %
- Dobutamine stress echo (exercise stress echo)
 Class IIA recommendation
Triad of: Chest Pain – Dyspnoea - Syncope

- Symptom Status
- Valvular Severity

“ANY SYMPTOMATIC SEVERE AS, IRRESPECTIVE OF EF AND FLOW RESERVE, HAS TO BE INTERVENED (class I)”

Without AVR, 1 yr. mortality is 30-50% (Turina et al. EHJ 1987)
Severe ‘Asymptomatic’ AS WITH LOW EF

Recommendation:
AVR for patients who have no symptoms and whose left ventricular ejection fraction is less than 50% (class I indication, level of evidence C)

- WITH NORMAL EF-management is challenging, an abnormal response to exercise stress testing and elevated BNP may identify a higher-risk group that might benefit from closer followup and earlier surgery
Case Scenario

- H/O
 72 yr old Man
 Dyslipidemia, CAD
- C/O
 DOE & AOE
 CLASS II

- AV
 GRADIENTS = 53/32
- LVEF = 62 %
- iAVA = 0.5 cm²
- Gr 2 DD
e/e' = 12

LOW FLOW, LOW GRADIENT, SEVERE AS WITH NORMAL EF

New Entity

- First reported in 2007 by Hacicha et al. in 512 pts. (CIRCULATION)
- ECHO PROFILE:
 - Mean gradient < 40 mmhg,
 - AVA < 1.0 cm²,
 - Flow < 35 ml/m²,
 - EF ≥ 40 %
ROLE OF STRESS ECHO AND STRAIN in A symptomatic AS
“Normal LVEF Does Not Mean Normal Myocardial Function”
- LVEF is a late and insensitive marker for study of LV functions
- Not too far that LVEF will be replaced by other better markers of LV function

alternatives to ‘EF’
- Valvulo-Arterial Impedance (Zva) >5.5
- MPI (Tei Index) >0.42
- Mitral annular displacement (By TDI) <12 mm
- Global LV Strain <10%
- CT AV Calcium Scoring >1650 AU
- BNP levels >550 pg/ml
TREATMENT DECISIONS

- 2012 ESC guidelines class IIa indication for AVR
- "This subgroup of patients seems to be at a more advanced stage and has a poorer prognosis if treated medically rather than surgically"
- It remains to be determined if TAVI could not be a better alternative in these patients

Conclusions

2D and 3D TEE play a central role during TAVR procedures:

• **Pre Procedure**: – Characterization of aortic complex, determination of AS severity, identification of contraindications
• **Intra Procedure**: – Catheter and device guidance, AVR deployment
• **Post Procedure**: – Valve position stability and function, AI, complications

Conclusion

• **Accurate AVA Calculation by Continuity Equation Must Be a Standard in Evaluation of AS by Echo**
• **Else We Are Going to Miss 30% Cases of Severe AS**
• **Low Flow AS Could Be Due to Both Normal and Reduced EF**
• **Institution Protocols to Be Designed for Evaluation and Treatment of Low Flow States**
• Low Flow due to low EF

• DSE to differentiate True from Pseudo Severe AS

• EOA (proj) & CT AV Ca Score

• AVR irrespective of EF and Flow reserve

• Low Flow due to intrinsic myocardial dysfunction

• Better picked up by novel methods of LV function like MAD, Tei index, Strain apart from Zva, BNP levels

• AVR better than medical management
In 2018, there is a clear trend toward a movement of TAVR out of hybrid operating rooms and into catheterization laboratories.

Without question, patients undergoing TAVR are still at risk for procedural complications, and as such an anesthesiologist should remain part of the TAVR team.

Computed tomography predicts complications,

TEE continues to play a vital role.
Thank You