Early SVG Failure

Hany Ragy MBBCh, MSc, MD, FSCAI
Chief of Cardiology
NHI, Imbaba
Egypt

45th Annual Meeting of Egyptian Society of Cardiology
Abstract

Saphenous vein graft (SVG) is the most common technique of coronary artery bypass grafting (CABG). SVG failure is a source of significant morbidity and mortality and is the bane of the technique. Despite this, SVG was used in up to 85% of CABG cases done worldwide in 2015. There is a large volume of literature on late SVG failure unlike early SVG failure. This manuscript provides further insight to the pathology and prevention of early SVG failure. Early SVG failure is defined as the inability of SVG to support the metabolic requirement of a targeted myocardium resulting in potential ischemia/infarction necessitating an intervention. The major culprits for early SVG failure are vascular endothelial damage and turbulent flow. These generate shear stress and cytokine release that mediate processes that culminate in early thrombotic SVG occlusion; a substrate for late SVG occlusion. Prevention of early SVG occlusion depends on good surgical techniques, minimal endothelial damage to SVG, large caliber anastomosis, storage in buffered ionic solution and prompt postoperative use of pharmacologic agents like antplatelet, ACE-inhibitors and statins. Experimental techniques like external SVG vest and gene therapy show promising initial results.

Keywords: Coronary artery bypass surgery, endothelium, occlusion, platelet, prevention, saphenous vein graft failure, thrombosis, vein graft disease

To access this article, please choose from the options below

Ischemia Driven Coronary Angiography Early After Coronary Bypass Surgery

145 patients from 3 experienced centers
Approximately 3.5% of CABG

Findings

<table>
<thead>
<tr>
<th>No Explanation</th>
<th>Graft Failure</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>56</td>
</tr>
</tbody>
</table>

Treatment

<table>
<thead>
<tr>
<th>PTCA</th>
<th>Re-CABG</th>
<th>Medical Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>53</td>
<td>50</td>
<td>45</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>10</td>
</tr>
</tbody>
</table>

What is the Frequency of Graft Failure at One Year?

<table>
<thead>
<tr>
<th>Study</th>
<th>1 Year (% per patient)</th>
<th>5 Years</th>
<th>10 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRAGUE-4</td>
<td>41% (on pump) 51% (off pump)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>PREVENT IV</td>
<td>41.7%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>RIGOR</td>
<td>31%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Halabi, et. al.</td>
<td>39.3%</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>ROOBY</td>
<td>28.7% (on pump) 36.5% (off pump)</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Goldman et. al.</td>
<td>20%</td>
<td>31%</td>
<td>39%</td>
</tr>
</tbody>
</table>

Vanderbilt Intra-operative Angiography After CABG Study
796 Grafts ; 2005-2007

- 97 (12%) had significant defects
- 22 (2.8%) minor adjustments
- 48 (6%) required PCI (1.8 stents per pt. ; 84% DES)
- 27 (3.4%) surgical revision

Zhao et al. JACC 2009;53:232
How Should Early Post-CABG Ischemia Be Managed?

Coronary Angiography and PCI (or Re-Op) If Appropriate - Class I indication ACC/AHA PCI

In Hospital Results of 2,256 Patients After SVG PCI at Emory University Hospital

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Angiographic Success</td>
<td>95%</td>
</tr>
<tr>
<td>In Lab Complication</td>
<td>12%</td>
</tr>
<tr>
<td>CK > 750</td>
<td>7%</td>
</tr>
<tr>
<td>Q wave MI</td>
<td>1%</td>
</tr>
<tr>
<td>In-Hospital Death</td>
<td>1%</td>
</tr>
</tbody>
</table>

Ashfaq, Ghazzal, Douglas et al J Invasive Cardiol 2006;18:100-105
Case 1

- 56 year old male, presenting with ACS, inferior NSTEMI.
- Angio reveals critical proximal RCA disease, and severe left coronary stenosis, (CTO LAD)
- As excellent targets for CABG, referred for emergency CABGx4.
- CABG performed one day later.
- 7 hours post CABG cardiogenic shock and acute STEMI in the inferior leads, ventilation and IABP.

Post-CABG Myocardial Ischemia

- Bypass
- Wrong Vessel
- Early Graft Failure
- Native Vessel Progression
- SVG Atheroma
- Diffuse Disease

???
Native Vessel vs SVG PCI With Drug-Eluting Stents

Inside the cath lab and next 24h
- Immediate hemodynamic improvement.
- Weaned off the ventilator and IABP within less than 24h.
- Discharged from the CCU to a room in 3 days.
- Discharged from the hospital with good EF in one week.

Bundhoo et al CCI 2011;78:169
13 years later, fully active normal LVEF, asymptomatic, still angry at not receiving a PCI in the first place

- We are always available as PCI onsite 24/7 backup for early CABG failures, exactly like we used to have on site surgical backup in the early days of PTCA
Case 2

- LIMA to LAD, SVG to RCA
- 6 months post CABG- severe rest angina (ACS)
 Angio Patent LIMA to LAD, critical proximal SVG to the RCA with a visible intracoronary thrombus.
- PCI performed using Spider Rx distal protection device and 4 /20 mm DES.
- 8 year clinical follow up, asymptomatic, negative stress test.

PCI in SVG Disease is often Complicated by Myocardial Infarction

Creatine Kinase > 3 times normal

[Bar chart showing RAVES1 22% and Two Centers2 1995-1997 17%]

Procedural AMI is the strongest predictor of late death3

Options For Improved Outcomes in SVG PCI

- Embolic Protection
- Stent Issues (Direct stenting, DES vs BMS, sizing)
- Thrombus Management
- Vasodilators

SAFER Trial – Comparison of PercuSurge to Routine Stenting in SVG’s

801 Patients Randomized

30 Day MACE

- Routine: 16.5%
- Protected: 9.6%

Reduced 42%
P<0.001

Fire Trial: Randomized Filter Wire vs. GuardWire in SVG PCI

650 patients in 65 sites

<table>
<thead>
<tr>
<th></th>
<th>FW</th>
<th>GW</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIMI 3 Flow</td>
<td>95.7%</td>
<td>97.7%</td>
</tr>
<tr>
<td>Device Success</td>
<td>95.5%</td>
<td>97.2%</td>
</tr>
<tr>
<td>Death</td>
<td>0.9%</td>
<td>0.9%</td>
</tr>
<tr>
<td>MI</td>
<td>9.0%</td>
<td>10.0%</td>
</tr>
<tr>
<td>QMI</td>
<td>0.9%</td>
<td>0.6%</td>
</tr>
<tr>
<td>30 day MACE</td>
<td>9.9%</td>
<td>11.6%</td>
</tr>
</tbody>
</table>

Conclusion: FW not inferior to GW

Stone et al. *J Am Coll Cardiol* 2003; 41: 43A
Direct Stenting of SVGs Improves Acute Outcomes

- Less non-Q MI (11% vs 18%, P<0.02)
- Reduced CK-MB
- Lower maximal CK-MB

Leborgne et al. *AHJ* 2003;146:501

Should Stents in SVGs Be Intentionally Undersized?

- Less plaque extrusion through stent struts by IVUS
- Less MI (CK-MB > 3 X Normal)
- Similar TVR and TLR at 1 year

Hong et al. *AJC* 2010;105:179
Conclusions: Post-CABG Revascularization

- Distal protection devices are useful specially in old grafts

- Direct stenting and slightly undersizing may improve outcomes

- DES treatment reduces angiographic and clinical restenosis but does not alter death or MI

- Native vessel PCI is preferred whenever possible as an alternative therapy

Surgeons still use SVG’s in more than 90% of patients.

The best way to keep an SVG open is to leave it in the leg.

Awaiting Data from the NIH HYBRID study
Thank you