Toolbox

Thomas Schmitz, MD

Contilia Heart and Vascular Center Elisabeth Krankenhaus Essen, Germany

Complex Coronary Interventions

• Strategy
• Access (sheath size)
• Guiding catheter
• Material (wire, balloon, stents,...)
• Complication-management
Accomodating capacity of guide catheters for PCI devices

<table>
<thead>
<tr>
<th>Fr.</th>
<th>Capacity and Devices</th>
</tr>
</thead>
</table>
| 5 Fr (0.056 – 0.059”) | Balloon angioplasty, DEB, most coronary stents, Kissing balloons with smaller profile balloons and 0.010” guidewire
Rotablator brr 1.25 mm
Some IVUS catheters (Volcano Eagle Eye® Gold / Platinum catheter; Terumo ViewIT®) |
| 6 Fr (0.068 – 0.071”) | Standard angioplasty and stenting, bifurcation angioplasty with kissing balloons
Flextome® cutting balloon, Venture®, 6F Export® Aspiration catheter
IVUS
Rotablator brr 1.5 mm|
| 7 Fr (0.078 – 0.081”) | 2 monorail balloon catheters
Rotablator brr up to 1.75 mm & 2 mm
Simultaneous 2 stent deployment, simultaneous 2 microcatheters |
| 8 Fr (0.088 – 0.091”) | 2 OTW balloon catheters
Rotablator brr 2.25 mm |

Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany
TRA for rotational atherectomy

Table 8: Procedural Characteristics

<table>
<thead>
<tr>
<th>Variable</th>
<th>TRA</th>
<th>CTG</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Success (%)</td>
<td>99.5</td>
<td>96.7</td>
<td>0.35</td>
</tr>
<tr>
<td>Procedure time (min)</td>
<td>112.4±10.0</td>
<td>112.4±10.0</td>
<td>0.84</td>
</tr>
<tr>
<td>Radiation exposure</td>
<td>12.0±3.9</td>
<td>12.0±3.9</td>
<td>0.84</td>
</tr>
</tbody>
</table>

TRA for Bifurcation

ESC Guidelines 2015 ACS

In centres experienced with radial access, a radial approach is recommended for coronary angiography and PCI.

Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany
HEAVILY CALCIFIED LESION

Differences between semi-compliant and non-compliant balloons

Semi-compliant balloon
- Soft, flexible, low profile
- First choice for crossing tight lesions

Non-compliant balloon
- Robust and low growth
- Pre-dilation of fibro-calcific lesions
- Ideal for achieving stent apposition

Dogboning
Scoring Balloon
AngioSculpt® (AngioScore)

- Flexibel Nitinol-Wires
- Semi-compliant Balloon
- Crossing-Profil: 2,7F, 0.014inch

Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany
Rotablation

ESC Guidelines
Rotablation

Guidelines on myocardial revascularization

The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)

Rotablation is recommended for preparation of heavily calcified or severely fibrotic lesions that cannot be crossed by a balloon or adequately dilated before planned stenting.

Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany
Start small
1.25 mm or 1.5 mm or 1.75 mm burr

Balloon failed to dilate lesion
in the absence of a dissection start with 1.75 mm or 2.0 mm burr

Largest final burr
0.6 burr-to-artery ratio
LEFT MAIN DISEASE

- Sizing
- Strategy (One vs Two-Stent Strategy)
- Stent design
- Imaging (IVUS / OCT)
Post-dilatation expansion and DES model designs

<table>
<thead>
<tr>
<th>Balloon Max. size</th>
<th>Element</th>
<th>Xience</th>
<th>Taxus</th>
<th>Integrity</th>
<th>BioMatrix</th>
<th>Cypher</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>2.35</td>
<td>Very small (2 cells) max expansion: 3.0mm</td>
<td>Medium vessel workhorse (6 crowns, 2 cells) max expansion: 5.4mm</td>
<td>Small vessel workhorse (8 crowns, 2 cells) max expansion: 3.4mm</td>
<td>Medium vessel workhorse (8 crowns, 2 cells) max expansion: 4.6mm</td>
<td>Medium vessel workhorse (8 crowns, 2 cells) max expansion: 4.6mm</td>
</tr>
<tr>
<td>3.0</td>
<td>2.50</td>
<td>Small vessel workhorse (8 crowns, 2 cells) max expansion: 3.0mm</td>
<td>Medium vessel workhorse (8 crowns, 3 cells) max expansion: 4.4mm</td>
<td>Small vessel workhorse (8 crowns, 2 cells) max expansion: 3.4mm</td>
<td>Medium vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Medium vessel workhorse (8 crowns, 2 cells) max expansion: 4.4mm</td>
</tr>
<tr>
<td>2.5</td>
<td>2.75</td>
<td>Medium vessel workhorse (8 crowns, 3 cells) max expansion: 4.4mm</td>
<td>Large vessel (8 crowns, 3 cells) max expansion: 5.8mm</td>
<td>Large vessel workhorse (8 crowns, 3 cells) max expansion: 4.9mm</td>
<td>Large vessel workhorse (8 crowns, 3 cells) max expansion: 5.9mm</td>
<td>Large vessel (8 crowns, 3 cells) max expansion: 5.8mm</td>
</tr>
<tr>
<td>2.0</td>
<td>3.00</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
</tr>
<tr>
<td>1.5</td>
<td>3.50</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
</tr>
<tr>
<td>1.0</td>
<td>4.00</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
</tr>
<tr>
<td>0.5</td>
<td>4.50</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
</tr>
<tr>
<td>0.0</td>
<td>5.00</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel workhorse (10 crowns, 2 cells) max expansion: 3.6mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
<td>Large vessel (18 crowns, 3 cells) max expansion: 5.4mm</td>
</tr>
</tbody>
</table>

- Minimal stent LO excluding struts
- Limited to 6.0 mm balloons at 14 ATM

EFFECTS OF LABELED MAXIMUM OVEREXPANSION

Resolute Onyx™ 5.00 x 18 mm DES deployed to 5.75 mm
- Average farspreading at 5.75mm 0.8%
- Average farspreading at 5.75mm 16.6%

Promus Premier™ 4.00 x 20 mm DES deployed to 5.75mm

Resolute Onyx DES and Promus Premier DES are labelled to a maximum overexpansion of 5.75 mm per the IFU.
Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany

- **XIENCE Sierra**
 - 25x magnification at max expansion of 5.5 mm
 - Coating remains intact at maximum post-dilatation expansion of 5.5 mm from 3.5 mm

- **SYNERGY**
 - 25x magnification at max expansion of 4.25 mm
 - Coating shows multiple cracks with delamination at its max expansion of 4.25 mm from 3.5 mm

- **Resolute Onyx**
 - 25x magnification at max expansion of 4.75 mm
 - Coating peels off and shows exposed metal at its max expansion of 4.75 mm from 3.5 mm

Contilia Heart- and Vascular Center, Elisabeth Krankenhaus Essen, Germany
CTO

- Bilateral access to visualize the wire position and wire progress
- Maximum back-up by guide catheter
- Microcatheter over the wire approach essential
Microcatheter

- Better steerability & less friction
- Advance in tortuous proximal vessel with soft tipped wire shaped
- Exchange at proximal cap for CTO wire
- Reshape CTO wire if necessary (will lose tip curve)
- Exchange CTO wire if necessary
- After exit of distal cap change to atraumatic wire again
Current step-up GW strategy for Antegrade CTO-PCI

- DRILLING (controlled)
- PENETRATION
- SLIDING

Sliding technique

Wiring along microchannel

- Polymersleeve, tapered tip, low tipload
- ASAHI Fielder XT, XT-A, XT-R

• Anti kinking structure
• Higher torque performance with W coil

ASAHI Sion, Abbott Pilot 50 / 150
Drilling (controlled)

Gaia wire concept: Deflection & Rotational control

Intentional control through deflection to stay true lumen

Gaia wires

GAIA Basic structure

<table>
<thead>
<tr>
<th></th>
<th>ASAHI intecc; Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Length</td>
<td>1900mm</td>
</tr>
<tr>
<td>Coil Length</td>
<td>150mm</td>
</tr>
<tr>
<td>First:</td>
<td>0.26mm (0.010inch)</td>
</tr>
<tr>
<td>Second:</td>
<td>0.28mm (0.011inch)</td>
</tr>
<tr>
<td>Third:</td>
<td>0.30mm (0.012inch)</td>
</tr>
</tbody>
</table>

Various lineups for the different situation or lesion:

- **ASAHI Gaia First**
 - Diameter: 0.26mm - 0.36mm
 - Tip load: 0.7gf

- **ASAHI Gaia Second**
 - Diameter: 0.28mm - 0.36mm
 - Tip load: 3.5gf

- **ASAHI Gaia Third**
 - Diameter: 0.30mm - 0.36mm
 - Tip load: 4.5gf

Long hydrophilic coating that enhance the smooth controllability in micro catheter.
Penetration Technique

- Steel coil, tapered, high tip load
- ASAHI Confianza Pro, Confianza Pro 12

- Similar structure and tip stiffness as Conquest with SLIP-COAT™ coating for lubricity. The distal tip is not coated to allow it to catch on the entry point of the lesions.

- A tapered tip with 12g tip load. For penetration of calcification and proximal or distal thick, fibrous caps.
Which wire to use when

Stiffer tip

- Fielder XT
- ASAHI Gaia First
- ASAHI Gaia Second
- Miracle 6
- ASAHI Gaia Third
- Miracle 12
- Confianza Pro
- Confianza Pro 12
- Confianza Pro
- Confianza Pro
- Confianza Pro
- Confianza Pro
- Confianza Pro 12
- Confianza Pro

Avoid the following mistakes:

- All operators perform cto`s
- No consistent structure
- Different materials were used
- No contralateral injection
- No standardized pre-diagnostic
<table>
<thead>
<tr>
<th>Procedure</th>
<th>2014</th>
<th>2015</th>
<th>2016</th>
<th>2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coro</td>
<td>4712</td>
<td>4913</td>
<td>4909</td>
<td>5130</td>
</tr>
<tr>
<td>PCI</td>
<td>2478</td>
<td>2588</td>
<td>2650</td>
<td>2750</td>
</tr>
<tr>
<td>TAVI</td>
<td>99</td>
<td>150</td>
<td>175</td>
<td>260</td>
</tr>
<tr>
<td>Mitraclip</td>
<td>22</td>
<td>38</td>
<td>49</td>
<td>64</td>
</tr>
</tbody>
</table>
Thank you!