Radial Artery Occlusion Prevention and Recanalization

Samir B. Pancholy, MD, FAHA, FACC, FSCAI
Program Director, Cardiology Fellowship,
Wright Center for Graduate Medical Center
Professor of Medicine,
Geisinger Commonwealth School of Medicine, Scranton, PA, USA

Disclosures

• Consultant: Medtronic, Terumo
• Equity: Vasoinnovations Inc
RAO Happens !!!!!!!

2015 PubMed RAO Rates

- Rotterdam: 3.90%
- AJULAR: 8.90%
- Edris et al.: 14.90%
- HANGAR: 9.20%
- Degirmencioglu: 5.50%
- Hahalis et al.: 14%

RAO Incidence

Mean Reported RAO Incidence: 9.40%

Mechanism of RAO

- Thrombosis (acute)
- Rapid organization with fibrotic lumen obliteration
Mechanism of RAO

Pancholy SB J Inv Cardiol 2009
Mechanism of RAO

Pancholy SB J Inv Cardiol 2009

Mechanism of RAO

Pancholy SB J Inv Cardiol 2009
Mechanism of RAO

Aminian A et al. EuroIntervention 2017
Figure 2

1926 patients randomized at 12 sites

- 967 patients assigned to GSS6Fr
- 959 patients assigned to GSSFr

Protocol Violation N=24
Failed Radial Puncture N=12

- GSS6Fr in 921 patients
- GSSFr in 917 patients

- Patent Hemostasis in 448 patients
- Institutional Hemostasis in 473 patients

- Patent Hemostasis in 470 patients
- Institutional Hemostasis in 447 patients

Table 2. Primary end-point (RAO)

<table>
<thead>
<tr>
<th>Sheath type</th>
<th>GSS6Fr</th>
<th>GSSFr</th>
<th>(P_{\text{non-inferiority}})</th>
<th>(P_{\text{value}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>921</td>
<td>917</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAO (%)</td>
<td>32 (3.47)</td>
<td>16 (1.74)</td>
<td>0.150</td>
<td></td>
</tr>
<tr>
<td>Hemostasis protocol</td>
<td>Patent</td>
<td>Institutional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>918</td>
<td>920</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RAO (%)</td>
<td>24 (2.61)</td>
<td>24 (2.61)</td>
<td>1.0000</td>
<td></td>
</tr>
</tbody>
</table>
Sheathless Technique

Table 6. Univariate Analysis of RAO and Access Site Crossover Owing to Grade 4

<table>
<thead>
<tr>
<th>RAS.</th>
<th>RAO + grade 4 RAS (+) (n=9)</th>
<th>RAO + grade 4 RAS (-) (n=594)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, (year)</td>
<td>73.0 ± 9.3</td>
<td>69.7 ± 10.1</td>
<td>0.418</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>3 (50.0)</td>
<td>112 (18.8)</td>
<td>0.088†</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24.9 ± 2.7</td>
<td>24.4 ± 3.3</td>
<td>0.755</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>5 (83.3)</td>
<td>289 (48.7)</td>
<td>0.116†</td>
</tr>
<tr>
<td>Chronic kidney disease, n (%)</td>
<td>3 (50.0)</td>
<td>114 (19.2)</td>
<td>0.092‡</td>
</tr>
<tr>
<td>Beta-blocker, n (%)</td>
<td>5 (83.3)</td>
<td>193 (32.5)</td>
<td>0.017‡</td>
</tr>
<tr>
<td>Calcium channel blocker, n (%)</td>
<td>2 (33.3)</td>
<td>305 (51.4)</td>
<td>0.441‡</td>
</tr>
<tr>
<td>Mean diameters of radial arteries, (mm)</td>
<td>1.78 ± 0.73</td>
<td>2.20 ± 0.46</td>
<td>0.026</td>
</tr>
<tr>
<td>6.5-Fr SH-GC, n (%)</td>
<td>0 (0.0)</td>
<td>330 (50.5)</td>
<td>0.031‡</td>
</tr>
<tr>
<td>Mean sheath/radial artery ratio</td>
<td>1.61 ± 0.67</td>
<td>1.09 ± 0.25</td>
<td><0.001</td>
</tr>
<tr>
<td>Mean procedure time, (min)</td>
<td>78.2 ± 42.7</td>
<td>45.7 ± 20.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous ipsilateral TRI, n (%)</td>
<td>1 (66.7)</td>
<td>299 (50.3)</td>
<td>0.686‡</td>
</tr>
<tr>
<td>Previous CABG, n (%)</td>
<td>2 (33.3)</td>
<td>10 (1.7)</td>
<td>0.005‡</td>
</tr>
</tbody>
</table>

Horie K et al. Eurointervention 2017
Sheathless Technique

TABLE 6. Univariate Analysis of RAO and Access Site Crossover Owing to Grade 4

<table>
<thead>
<tr>
<th></th>
<th>RAO + grade 4 RAS (+)</th>
<th>RAO + grade 4 RAS (-)</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, (year)</td>
<td>73.0 ± 9.3</td>
<td>69.7 ± 10.1</td>
<td>0.418</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>3 (50.0)</td>
<td>112 (18.8)</td>
<td>0.088‡</td>
</tr>
<tr>
<td>Body mass index (kg/m²)</td>
<td>24.9 ± 2.7</td>
<td>24.4 ± 3.3</td>
<td>0.755</td>
</tr>
<tr>
<td>Diabetes, n (%)</td>
<td>5 (83.3)</td>
<td>289 (48.7)</td>
<td>0.116‡</td>
</tr>
<tr>
<td>Chronic kidney disease, n (%)</td>
<td>3 (50.0)</td>
<td>114 (19.2)</td>
<td>0.092‡</td>
</tr>
<tr>
<td>Beta-blocker, n (%)</td>
<td>5 (83.3)</td>
<td>193 (32.5)</td>
<td>0.017†</td>
</tr>
<tr>
<td>Calcium channel blocker, n (%)</td>
<td>2 (33.3)</td>
<td>305 (51.4)</td>
<td>0.441†</td>
</tr>
<tr>
<td>Mean diameters of radial arteries, (mm)</td>
<td>1.78 ± 0.73</td>
<td>2.20 ± 0.46</td>
<td>0.026</td>
</tr>
<tr>
<td>6.5-Fr SH-GG, n (%)</td>
<td>0 (0.0)</td>
<td>330 (50.5)</td>
<td>0.031‡</td>
</tr>
<tr>
<td>Mean sheath/radial artery ratio</td>
<td>1.61 ± 0.60</td>
<td>1.69 ± 0.25</td>
<td>>0.001</td>
</tr>
<tr>
<td>Mean procedure time, (min)</td>
<td>78.2 ± 42.7</td>
<td>45.7 ± 20.3</td>
<td><0.001</td>
</tr>
<tr>
<td>Previous isoprenaline TRU, n (%)</td>
<td>106 (67.6)</td>
<td>299 (50.3)</td>
<td>0.686‡</td>
</tr>
<tr>
<td>Previous CABG, n (%)</td>
<td>2 (33.3)</td>
<td>10 (1.7)</td>
<td>0.005‡</td>
</tr>
</tbody>
</table>

Horie K et al, Eurointervention 2017

UFH Dose and RAO

Spaulding C et al, CCI 1996
Heparin Dose matters!

Bernat I et al, Am J Cardiol

UFH Dose and RAO

Hahalis G et al, Int J Cardiol 2015
bossard M et al Can J Cardiol 2017

Bossard M et al Can J Cardiol 2017
Warfarin is not enough!!!!

RAO: Flow cessation

Sanmartin et al CCI 2007; 70: 185-9
Patent Hemostasis

Incidence of Radial Artery Occlusion

- Traditional Hold (Group I)
 - Early occlusion (24h): n=27
 - Persistent Occlusion (30d): n=11
 - P < 0.05

- Patent hemostasis (Group II)
 - Early occlusion (24h): n=16
 - Persistent Occlusion (30d): n=4
 - P < 0.05

Wilson SJ et al Int J Cardiol 2017
Beware of Rebound Bleeding

Rebound Bleeding = Revengeful Pressure

Rebound Bleeding = Revengeful Pressure

RAO

How to compress?

Duration in Minutes

P < 0.0001

Dressing Balloon Band Pad Band

1650 patients RANDOMIZED to 3 groups

Cong X et al, J Cardiov Nurs, 2016
How to compress?

RAO %

Dressing Balloon Band Pad Band

1650 patients RANDOMIZED to 3 groups

Cong X et al, J Cardiov Nurs, 2016

Eliminate residual spasm

Dharma S, Kedev S, Patel T et al, CCI 2014
Radio-Ulnar circuit

RA

UA

Radio-Ulnar circuit

RA

UA
Radio-Ulnar circuit

Ulnar compression

UA compressed

UA released
Radial VTI with Ulnar compression

![Graph](image)

Baseline	N = 150	Ulnar compression
VTI (m.s²) | 8.4 | 12.8

P < 0.0001

Pancholy S et al, J Inv Cardiol 2015

PROPHET-II
(Prevention of Radial Artery Occlusion – Prophylactic Hyperperfusion Evaluation Trial)

Figure 2: CONSORT Diagram

Pancholy S et al, JACC Interv 2016
PROPHET-II
(Prevention of Radial Artery Occlusion – Prophylactic Hyperperfusion Evaluation Trial)

Figure 3: Incidence of Radial Artery Occlusion

Pancholy S et al, JACC Interv 2016

• Prophylactic Ulnar compression lowers RAO
Figure 1: Ipsilateral Ulnar Compression During Radial Artery Hemostasis

PROPHET-II
(Prevention of Radial Artery Occlusion – Prophylactic Hyperperfusion Evaluation Trial)

ULnar Artery Transient Compression Facilitating Radial Artery Patent Hemostasis (ULTRA):
A Novel Technique to Reduce Radial Artery Occlusion After Transradial Coronary Catheterization

Michael J. Kontzouris, MD, PhD; Christos D. Maniotis, MD, PhD; Grigoris Aridakos, MD; Andreas Tsoumeleas, MD; Constantinos Androu, MD, PhD; Zenon S. Kyriakides, MD, PhD
Table 3. Radial artery patency after intervention.

<table>
<thead>
<tr>
<th></th>
<th>Conventional Method (n = 121)</th>
<th>ULTRA Method (n = 119)</th>
<th>P-Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No pulsation</td>
<td>15 (12.4%)</td>
<td>3 (2.5%)</td>
<td>.01</td>
</tr>
<tr>
<td>No duplex flow</td>
<td>6 (5.0%)</td>
<td>0 (0.0%)</td>
<td>.01</td>
</tr>
</tbody>
</table>

Data presented as number [%].

Koutouzis et al, J Inv Cardiol 2016

Have we made a difference?
Recanalization
Why recanalize?

• Never to re-establish patency (risk exceeds the potential benefit)
• Consider the dangers of embolization, especially down the ulnar artery.

Why recanalize?

• If the involved radial artery the only viable access.
• If unequivocal evidence of digital ischemia
Beware of the risks

• Digital arteries are end-arteries.
• Digital ischemia / necrosis usually disabling.

Methods

• Traditional “antegrade” approach, with TF or UE (ipsilateral ulnar or contralateral radial access)
• Retrograde recanalization
Retrograde recanalization

- Radial artery “stump” has > 70% MAP
- Introducer in the distal radial artery stump provides occlusive distal protection.

Doppler mapping

- Using a bedside doppler probe, map along the radial artery looking for a signal and cut-off, demarcating the thrombosed segment.
Caution

- Do not inject ANY fluid FORWARD till pulsatile flow is established
- Use either a 5-6 F sheath or 5F multipurpose guide catheter to “core” out the thrombus.
- DO NOT advance the Sheath/Catheter past the proximal third of the radial trunk.

CAUTION

- Maintain negative suction
- Remove the Sheath/Catheter after 1-2 cm passes and flush it out. Open side arm valve of the introducer to look for pulsatile flow
- If no pulsatile flow, repeat the “coring” process.
- DO NOT cross brachial bifurcation
Difficult to hurt the hand

Thrombus migration
Thrombus migration

Digital emboli
Thank you