Anti-platelet therapy - What is in the pipeline?

Prof. Dr. Andreas Zirlik
Cardio Luxor 2015

Disclosures for Andreas Zirlik, MD

In compliance with CME policy, the following disclosures to the session audience are declared:

<table>
<thead>
<tr>
<th>Research support/P.I.</th>
<th>Astellas, Astra Zeneca, ResMed, Novartis, Medtronic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Travel support</td>
<td>Daichi Sankyo, Astellas, Lilly, Medtronic, Pfizer, Sanofi Aventis, Novartis, Bayer Health Care</td>
</tr>
<tr>
<td>Consultant</td>
<td>Bayer, Boehringer Ingelheim, Rigel, Cardiorentis, Medscape</td>
</tr>
<tr>
<td>Major stockholder</td>
<td>No relevant conflicts of interest to declare</td>
</tr>
<tr>
<td>Honoraria for lectures</td>
<td>Bayer Health Care, Astra Zeneca, Medtronic, ResMed, Boehringer Ingelheim, Rigel, Sanofi Aventis, Pfizer, Janssen-Cilag</td>
</tr>
</tbody>
</table>
How good are we in treating ACS?

<table>
<thead>
<tr>
<th></th>
<th>1999/2000 (n=1.645)</th>
<th>2007/1.4.2008 (n=1.889)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time between onset of symptoms and hospital admission ≤ 2 h</td>
<td>48,7%</td>
<td>42,2%</td>
<td><0,001</td>
</tr>
<tr>
<td>STEMI (vs. NSTEMI)</td>
<td>76,4%</td>
<td>49,5%</td>
<td><0,001</td>
</tr>
<tr>
<td>Admission by ambulance</td>
<td>44,1%</td>
<td>49,6%</td>
<td><0,001</td>
</tr>
<tr>
<td>Primary PCI</td>
<td>18,4%</td>
<td>79,9%</td>
<td><0,001</td>
</tr>
<tr>
<td>Thrombolysis</td>
<td>40,6%</td>
<td>1,1%</td>
<td><0,001</td>
</tr>
<tr>
<td>In-hospital mortality</td>
<td>12,2%</td>
<td>6,2%</td>
<td><0,001</td>
</tr>
</tbody>
</table>

GRACE: Which factors impact 6-month mortality after ACS?

![Mean Effect of each guideline-conforme therapy](image)

Mean Effect of each guideline-conforme therapy

- No Therapy
- Revascularisation
- Statin
- +Platelet inhibition (Thienopyridin)
- +GPIb/IIa
- +Rehabilitation
- +Beta-blocker
- +ACE-I
- +ASS

ns = non significant

Mod. nach: Chew DP et al Heart. 2010; 96 (15): 1201-6
Platelet activation – a key event in ACS

modified from Ahrens I & Bode C. Curr Opin Investig Drugs 2009;10:902-11

Platelet receptors as targets

modified from Ahrens I & Bode C. Curr Opin Investig Drugs 2009;10:902-11
Platelet receptors as targets

Inhibitors of the Coagulation Cascade
- anti-Xa (Rivaroxaban)
- anti-IX (Pegnivacogin)
- anti-II (Bivalirudin)

Inhibitors of the GPIIb/IIIa (Integrin \(\alpha_{IIb}\beta_3\))
- Thrombin
- ADP
- Collagen
- Serotonin
- Thromboxane A\(_2\)
- Epinephrin
- Thrombin
- GPVI
- GpIa
- vWF
- EPI-R
- TBXA\(_2\)-R
- 5HT\(_2\)-A
- GPIb/Illa (Integrin \(\alpha_{IIb}\beta_3\))
- Fibrinogen
- Fibrin

Abciximab
Eptifibatide
Tirofiban
Platelet receptors as targets

P\(_2\)Y\(_{12}\) inhibitors: mortality and bleeding in ACS

- CV-Death, MI or Stroke
- TIMI major Bleeding*

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CV-Death, MI or Stroke</th>
<th>TIMI major Bleeding*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ohne</td>
<td>20%</td>
<td>0,8</td>
</tr>
<tr>
<td>ASS(^{1,2})</td>
<td>15,0</td>
<td>1,3</td>
</tr>
<tr>
<td>ASS + Clopidogrel(^3)</td>
<td>15%</td>
<td>2,4*</td>
</tr>
<tr>
<td>ASS + Prasugrel(^4)</td>
<td>14%</td>
<td>2,4*</td>
</tr>
<tr>
<td>ASS + Ticagrelor(^4)</td>
<td>17%</td>
<td>2,2*</td>
</tr>
</tbody>
</table>

*non-CABG-associated TIMI major bleeding: symptomatic ICH or Hb-drop>5 g/dl or Hct-drop≥15%

Champion Phoenix – Cangrelor in PCI

- Direct reversible platelet P2Y₁₂ receptor antagonist
- Fast onset, fast offset, i.v.
- T₁/₂ = 3 to 6 minutes
- Offset = 60 minutes

CHAMPION PHOENIX
N = 10,900 MITT
SA/ NSTEMI-ACS/ STEMI
Patients requiring PCI
P2Y₁₂ inhibitor naïve

N=11145, urgent or elective PCI, Clopidogrel loading 300/600mg vs. Cangrelor 300ug/kg
i.v. + 4ug/kg Infusion 48h, 1°: death, MI, revasc, stent thrombosis after 48h
Platelet receptors as targets

- GPIIb/IIIa (Integrin \(\alpha_{IIb}\beta_3 \))
- ADP
- Collagen
- Thromboxane A\(_2\)
- Epinephrin
- Thrombin
- GpIa
- GpVI
- EPI-R
- TBX-A-R
- 5HT\(_2\)-A
- GPVI Inhibitors

Inhibitors of the Coagulation Cascade:
- anti-Xa (Rivaroxaban)
- anti-IX (Pegnivacogin)
- anti-II (Bivalirudin)
- Fibrinogen
- Fibrin

Thrombin receptor blockade: Vorapaxar

- Vorapaxar is an oral, potent, and selective antagonist of PAR-1
- Metabolism by CYP3A4 enzymes
- No meaningful renal clearance
- Long half-life (T1/2 > 100 hrs)
TRA2P: Vorapaxar in secondary prophylaxis

TRA 2° P: previous MI, (stroke), or PAD, N=26 400, Vorapaxar* 2.5mg vs. Placebo*

1° efficacy EP: CV death, MI, stroke

1° safety EP: major bleeding

FDA Approval 2014

Platelet receptors as targets

- **GPVI Inhibitors**
- **Clopidogrel**
- **Prasugrel**
- **Ticagrelor**
- **Eptifibatide**
- **Tirofiban**
- **Fibrinogen**
- **Platelet receptors as targets**
 - GPIIb/IIIa
 - ADP
 - Collagen
 - Serotonin
 - Thromboxane A2
 - Epinephrin
 - Thrombin
 - GpIa
 - GpVI
 - EPI-R
 - TBX2-R
 - 5HT2-A
 - Platelet receptors as targets
 - GPIIb/IIIa (Integrin $\alpha_{IIb}\beta_3$)
 - Fibrinogen
 - Fibrin

Glycoprotein VI – a promising novel preclinical candidate

- Only expressed on platelets and megakaryocytes
- Recruits platelets to sites of injury
- Hardly any effect on general hemostasis
- Presumed selectivity, targeted therapy

Rationale for dual pathway inhibition

Real-time in vivo imaging of an arterial thrombosis in mice following laser-induced injury

 Addition of Warfarin reduces events after ACS

Meta-analysis: ACS secondary prevention Warfarin + ASA vs. ASA
(10 Trials, n=5 938)

<table>
<thead>
<tr>
<th>Event</th>
<th>Rate Ratio (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Death</td>
<td>0.96 (0.77-1.20)</td>
</tr>
<tr>
<td>MI</td>
<td>0.56 (0.48-0.69)</td>
</tr>
<tr>
<td>Ischemic stroke</td>
<td>0.46 (0.27-0.77)</td>
</tr>
<tr>
<td>Major bleeding</td>
<td>2.48 (1.67-3.68)</td>
</tr>
<tr>
<td>Minor bleeding</td>
<td>2.65 (2.14-3.29)</td>
</tr>
</tbody>
</table>

Rationale for dual pathway inhibition

A C S T R E A T M E N T
ATLAS II: Rivaroxaban on top of ASS/Clopidogrel

Pat. with recent ACS, Randomization Rivaroxaban 2x2.5mg/d vs. 2x5mg/d vs. Placebo, n=15526
1° EP: CV death, MI, stroke

Efficacy & Safety

ATLAS ACS 2-TIMI 51: Efficacy

Rivaroxaban 2x2,5mg/d (all on ASS + Thienopyridin)
ESC Guidelines 2010 / 2011/2012

Classes of recommendation & levels of evidence

<table>
<thead>
<tr>
<th></th>
<th>NSTEMI-ACS</th>
<th>STEMI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>class</td>
<td>level</td>
</tr>
<tr>
<td>Ticagrelor*</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Prasugrel*</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Clopidogrel (for 9-12 months post PCI)</td>
<td>I</td>
<td>B</td>
</tr>
<tr>
<td>Clopidogrel (with 600 mg loading dose as soon as possible)</td>
<td>I</td>
<td>C</td>
</tr>
</tbody>
</table>

Recommended duration of dual antiplatelet therapy after ACS: 1 year in all patients, irrespective of revascularization strategy.

New STEMI Recommendations

<table>
<thead>
<tr>
<th>Class</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>IIb</td>
<td>B</td>
</tr>
</tbody>
</table>

In selected patients who receive aspirin and clopidogrel, low dose rivaroxaban (2.5 mg twice daily) may be considered if the patient is at low bleeding risk.

Which patients profit most from RIVAROXABAN in ACS?

Subgroup

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Primary Composite Endpoint [CV death/MI/Stroke]</th>
<th>CV death</th>
<th>Net Clinical Benefit **</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall ATLAS ACS 2 TIMI Study Population</td>
<td>HR 0.64, CI: 0.72–0.97 (ARR: 1.6%), NNT: 63</td>
<td>HR 0.66, CI: 0.51–0.86 (ARR: 1.4%), NNT: 71</td>
<td>Efficacy: -125, Safety: +10</td>
</tr>
<tr>
<td>Excluding Prior Stroke/TIA</td>
<td>HR 0.81, CI: 0.69–0.94 (ARR: 1.8%), NNT: 56</td>
<td>HR 0.63, CI: 0.48–0.82 (ARR: 1.5%), NNT: 67</td>
<td>Efficacy: -143, Safety: +6</td>
</tr>
<tr>
<td>Targeted population with Elevated Biomarkers, Excluding prior Stroke/TIA</td>
<td>HR 0.80, CI: 0.68–0.94 (ARR: 2.1%), NNT: 48</td>
<td>HR 0.55, CI: 0.41–0.74 (ARR: 2.0%), NNT: 50</td>
<td>Efficacy: -159, Safety: +3</td>
</tr>
</tbody>
</table>

ARR = absolute risk reduction based on 2-year KM estimates; NNT = number needed to treat

** Excess number of events in 10,000 patient years
Rationale for dual pathway inhibition

Rationale for dual pathway inhibition

RADAR: Pegnivacogin in ACS

RADAR Phase II Study for REG1 system (Pegnivacogin as anticoagulant + Animaversen as complementary antidot):
NSTEMI with planned PCI <24h, 3:1 Pegnivacogin 1mg/kg + 25, 50, 75, 100% Animaversen vs. Heparin i.v. n=640

30d Total & Major* Acuity Bleeding

30d MACE

* ICH, intraocular, retroperitoneal, bleed requiring intervention/surgery, hematoma ≥ 5 cm, Hgb ≥ 3 g/dL with an overt source or ≥ 4 g/dL without overt source of bleeding, blood product transfusion.

Eur Heart J 2013;34:2481-9
CAD requiring PCI

Open Label Randomization

PCI

- Pegnivacogin 1mg/kg N ~ 6600
- Bivalirudin N ~ 6600

Anivamersen Reversal
Immediate Sheath Removal
Sheath removal per local standard (0-4 hrs)

Death, myocardial infarction, urgent target lesion revascularization and stroke at 3-days

- 30-day clinical FU
- 6-month mortality FU

* “all comers” PCI excluding STEMI primary PCI
* Approximately 6600 patients with recent NSTEMI

Enrollment was stopped in August 2014 after 3 patients experienced allergic-like reactions.

* “all comers” PCI excluding STEMI primary PCI
* Approximately 6600 patients with recent NSTEMI
Take home messages:

- Advances in antiplatelet therapy significantly **reduced mortality** in ACS over last decades.
- Further **increase in IPA by single targets** my provoke overt bleeding.
- The future of antithrombotic therapy likely comprises a **dual pathway inhibition**.
- The gold standard of Aspirin needs to be challenged and **combinations of a novel antiplatelet with NOACs or PAR1 inhibitors** need to be interrogated.
- More **targeted and reversible antithrombotic strategies** (e.g. GPVI, aptamer technology) may be useful.

ACS

RADAR Phase II

RADAR Phase II Studie zum REG1 System (Pegnivacogin als Antikoagulanz + Animaversen als komplementäres Antidot):

NSTEMI mit geplanter PCI <24h bei femoralem Zugang, 3:1 Pegnivacogin 1mg/kg + 25, 50, 75, 100% Animaversen vs. Heparin i.v. n=640

30d Total & Major* Acuity Bleeding

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Total Bleeding</th>
<th>Major Bleeding</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG1</td>
<td>65.6</td>
<td>10.8</td>
</tr>
<tr>
<td>Heparin</td>
<td>65.6</td>
<td>10.8</td>
</tr>
<tr>
<td>REG1-35%</td>
<td>63.6</td>
<td>10.6</td>
</tr>
<tr>
<td>REG1-50%</td>
<td>63.6</td>
<td>10.6</td>
</tr>
<tr>
<td>REG1-75%</td>
<td>63.6</td>
<td>10.6</td>
</tr>
<tr>
<td>REG1-100%</td>
<td>63.6</td>
<td>10.6</td>
</tr>
<tr>
<td>Heparin</td>
<td>65.6</td>
<td>10.8</td>
</tr>
</tbody>
</table>

30d MACE

<table>
<thead>
<tr>
<th>Treatment</th>
<th>MACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>REG1</td>
<td>3.0</td>
</tr>
<tr>
<td>Heparin</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Enrollment was stopped after 3 patients experienced allergic-like reactions.

*ICH, intraocular, retroperitoneal, bleed requiring intervention/surgery, hematoma ≥ 5 cm, Hgb ≥ 3 g/dL with an overt source or ≥ 4 g/dL without overt source of bleeding, blood product transfusion.